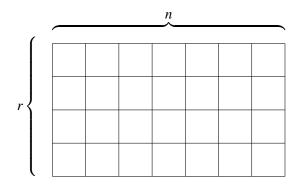
Rectangular experiments: restricted randomization or row-column designs?

r.a.bailey@qmul.ac.uk

Thanks to CAPES for support in Brasil

The problem

An agricultural experiment to compare n treatments. The experimental area has r rows and n columns.



Use a randomized complete-block design with rows as blocks. (In each row, choose one of the n! orders with equal probability.)

What should we do if the randomization produces a plan with one treatment always at one side of the rectangle?

Example

Federer (1955 book): guayule trees

В	D	G	A	F	С	Ε
A	G	С	D	F	В	Ε
G	Ε	D	F	В	С	Α
В	A	С	F	G	Ε	D
G	В	F	С	D	Α	Ε

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Example

Federer (1955 book): guayule trees

B	D	G	A	F	C	E
A	G	С	D	F	В	E
G	E	D	F	В	C	Α
В	A	С	F	G	E	D
G	В	F	С	D	A	E

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Solution (Fisher): Continue to randomize and analyse as usual

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization

Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization Keep re-randomizing until you get a plan you like. Analyse as usual. Solution: Use a Latinized design, but analyse as usual Deliberately construct a design in which no treatment occurs more than once in any column.

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization

Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Use a Latinized design, but analyse as usual Deliberately construct a design in which no treatment occurs more

than once in any column.

Solution (following Yates): Super-valid restricted randomization, with usual analysis

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Use a Latinized design, but analyse as usual Deliberately construct a design in which no treatment occurs more than once in any column.

Solution (following Yates): Super-valid restricted randomization, with usual analysis

Solution: Efficient row-column design, with analysis allowing for rows and columns

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Use a Latinized design, but analyse as usual Deliberately construct a design in which no treatment occurs more than once in any column.

Solution (following Yates): Super-valid restricted randomization, with usual analysis

Solution: Efficient row-column design, with analysis allowing for rows and columns

Solution: Use a carefully chosen Latinized design; REML/ANOVA estimates of variance components

Assumed model

 Y_{α} is the response on plot α .

 $E(Y_{\alpha}) = \theta_i$ where *i* is the treatment on α .

$$\operatorname{Var}(Y_{\alpha}) = \sigma^{2} \quad \text{for all } \alpha$$
$$\operatorname{Cov}(Y_{\alpha}, Y_{\beta}) = \begin{cases} \rho \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same row} \\ \tau \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same column} \\ 0 & \text{if } \alpha \neq \beta \text{ otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

with $0 \le \rho \le 1$ and $0 \le \tau \le 1$.

Pairwise variance in Example

B	D	G	A	F	С	Ε
A	G	С	D	F	B	Ε
G	Ε	D	F	В	С	Α
B	A	С	F	G	Ε	D
G	B	F	С	D	Α	Ε

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

From
$$V_{BG} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{4}{5}\tau \right]$$

Pairwise variance in Example

В	D	G	A	F	C	E
A	G	С	D	F	В	E
G	E	D	F	В	C	Α
B	A	С	F	G	E	D
G	В	F	С	D	A	E

From
$$V_{BG} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{4}{5}\tau \right]$$
 to $V_{EF} = \frac{2\sigma^2}{5} \left[1 - \rho + \tau \right]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Pairwise variance in Example

В	D	G	A	F	С	Ε
A	G	С	D	F	В	Ε
G	Ε	D	F	В	С	Α
В	A	С	F	G	Ε	D
G	В	F	С	D	Α	Ε

From
$$V_{BG} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{4}{5}\tau \right]$$
 to $V_{EF} = \frac{2\sigma^2}{5} \left[1 - \rho + \tau \right]$

with average
$$V = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{1}{15}\tau \right].$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲重 めんの

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Simple to construct.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Simple to construct.
- ► Simple to randomize.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- Simple to construct.
- Simple to randomize.
- Simple to analyse.

- Simple to construct.
- Simple to randomize.
- Simple to analyse.
- Some treatment comparisons in some experiments will have a specially low or specially high variance, but the estimated variance is unbiased when averaged over all comparisons and all possible randomized plans.

Keep re-randomizing until you get a plan you like. Analyse as usual.

Keep re-randomizing until you get a plan you like. Analyse as usual.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

► Inefficient to produce plans: many will have to be rejected.

Keep re-randomizing until you get a plan you like. Analyse as usual.

Inefficient to produce plans: many will have to be rejected. For the 5 × 7 rectangle, the proportion of plans with no repeat in any column is only 0.000006.

Keep re-randomizing until you get a plan you like. Analyse as usual.

Inefficient to produce plans: many will have to be rejected. For the 5 × 7 rectangle, the proportion of plans with no repeat in any column is only 0.000006.

The actual variance of treatment comparisons is lower, but the estimate of that variance is higher.

Keep re-randomizing until you get a plan you like. Analyse as usual.

- Inefficient to produce plans: many will have to be rejected. For the 5 × 7 rectangle, the proportion of plans with no repeat in any column is only 0.000006.
- The actual variance of treatment comparisons is lower, but the estimate of that variance is higher.

$$V = \frac{2\sigma^2}{r} \left[(1-\rho) - \frac{(r-1)\tau}{n-1} \right]$$

and

$$E(\hat{V}) = \frac{2E(M)}{r} = \frac{2\sigma^2}{r} \left[(1-\rho) + \frac{\tau}{n-1} \right]$$

Keep re-randomizing until you get a plan you like. Analyse as usual.

- Inefficient to produce plans: many will have to be rejected. For the 5 × 7 rectangle, the proportion of plans with no repeat in any column is only 0.000006.
- The actual variance of treatment comparisons is lower, but the estimate of that variance is higher.

$$V = \frac{2\sigma^2}{r} \left[(1-\rho) - \frac{(r-1)\tau}{n-1} \right]$$

and

$$E(\hat{V}) = \frac{2E(M)}{r} = \frac{2\sigma^2}{r} \left[(1-\rho) + \frac{\tau}{n-1} \right]$$

Genuine treatment differences may not be detected.

Deliberately construct a design in which no treatment occurs more than once in any column.

Easy to do this directly, eg

A			
C			
G			
B			
D			

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

Deliberately construct a design in which no treatment occurs more than once in any column.

Easy to do this directly, eg

A	B			
C	D			
G	A			
B	C			
D	E			

Deliberately construct a design in which no treatment occurs more than once in any column.

Easy to do this directly, eg

A	В	С		
C	D	Ε		
G	A	В		
B	С	D		
D	Ε	F		

Deliberately construct a design in which no treatment occurs more than once in any column.

Easy to do this directly, eg

A	В	С	D	Ε	F	G
C	D	Ε	F	G	A	В
G	A	В	С	D	Ε	F
B	С	D	Ε	F	G	A
D	Ε	F	G	Α	В	С

Deliberately construct a design in which no treatment occurs more than once in any column.

Easy to do this directly, eg

A	В	С	D	Ε	F	G
C	D	Ε	F	G	A	В
G	Α	В	С	D	Ε	F
B	С	D	Ε	F	G	Α
D	Ε	F	G	Α	В	С

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Randomize rows, columns, treatments.

Deliberately construct a design in which no treatment occurs more than once in any column.

Easy to do this directly, eg

A	В	С	D	Ε	F	G
C	D	Ε	F	G	A	В
G	Α	В	С	D	Ε	F
B	С	D	Ε	F	G	Α
D	Ε	F	G	Α	В	С

Randomize rows, columns, treatments.

Same bias in estimator of variance as for simple restricted randomization.

Needs tables of designs.

- Needs tables of designs.
- Randomize rows, columns and treatments.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Needs tables of designs.
- Randomize rows, columns and treatments.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Analyse as usual.

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
- Same average variance as in randomized complete-block design, but with smaller range.

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
- Same average variance as in randomized complete-block design, but with smaller range.

The estimator of variance is unbiased when averaged over all comparisons in this one experiment.

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
- Same average variance as in randomized complete-block design, but with smaller range.

- The estimator of variance is unbiased when averaged over all comparisons in this one experiment.
- There is no separate estimate of ρ or τ, so treatments must be randomized and a single standard error given for all differences.

A	В	С	D	Ε	F	G
D	Ε	F	С	A	В	G
A	G	F	В	С	Ε	D
D	В	G	F	С	Α	Ε
G	Ε	С	В	D	Α	F

1. In every pair of rows, there is exactly one column in which the two treatments are the same.

A	В	С	D	Ε	F	G
D	Ε	F	С	Α	В	G
A	G	F	В	С	Ε	D
D	В	G	F	С	Α	Ε
G	Ε	С	В	D	Α	F

1. In every pair of rows, there is exactly one column in which the two treatments are the same.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2. No treatment occurs more than twice in any column.

A	B	С	D	E	F	G
D	Ε	F	C	A	В	G
A	G	F	В	С	Ε	D
D	В	G	F	С	Α	Ε
G	Ε	С	В	D	Α	F

- 1. In every pair of rows, there is exactly one column in which the two treatments are the same.
- 2. No treatment occurs more than twice in any column.
- 3. If m_i = the number of columns in which treatment *i* occurs twice, then $m_i m_j \in \{-1, 0, 1\}$ for all other treatments *j*.

A	В	С	D	Ε	F	G
D	Ε	F	С	Α	В	G
A	G	F	В	С	Ε	D
D	В	G	F	С	A	Ε
G	Ε	С	В	D	Α	F

- 1. In every pair of rows, there is exactly one column in which the two treatments are the same.
- 2. No treatment occurs more than twice in any column.
- 3. If m_i = the number of columns in which treatment *i* occurs twice, then $m_i - m_j \in \{-1, 0, 1\}$ for all other treatments *j*.
- 4. Subject to conditions (1)–(3), the spread of the variances of the estimators of simple treatment differences is as small as possible.

Pairwise variances in the example

A	В	С	D	Ε	F	G
D	Ε	F	С	A	В	G
A	G	F	В	С	Ε	D
D	В	G	F	С	Α	Ε
G	E	С	В	D	Α	F

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q ○

Minimum
$$V_{AD} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{2}{5}\tau \right]$$

Maximum $V_{AB} = \frac{2\sigma^2}{5} \left[1 - \rho + \frac{2}{5}\tau \right]$
Average $V = \frac{2\sigma^2}{5} (1 - \rho)$

Pairwise variances in the example

Minimum
$$V_{AD} = \frac{2\sigma^2}{5} \begin{bmatrix} 1-\rho - \frac{2}{5}\tau \end{bmatrix} \qquad \dots -\frac{4}{5}\tau$$

Maximum $V_{AB} = \frac{2\sigma^2}{5} \begin{bmatrix} 1-\rho + \frac{2}{5}\tau \end{bmatrix} \qquad \dots + \tau$
Average $V = \frac{2\sigma^2}{5}(1-\rho) \qquad \dots -\frac{1}{15}\tau$
one layout,
normal

method > () + ()

Pairwise variances in the example

Minimum
$$V_{AD} = \frac{1}{5} \begin{bmatrix} 1-\rho-\frac{1}{5}\tau \end{bmatrix}$$
 $\dots = \frac{1}{5}\tau$
Maximum $V_{AB} = \frac{2\sigma^2}{5} \begin{bmatrix} 1-\rho+\frac{2}{5}\tau \end{bmatrix}$ $\dots + \tau$
Average $V = \frac{2\sigma^2}{5}(1-\rho)$ $\dots = \frac{1}{15}\tau$ $\dots = \frac{2}{3}\tau$
one layout, simple
normal restricted
method $r = \frac{1}{5}r$ randomization

Needs tables of designs.

- Needs tables of designs.
- Randomize rows and columns.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
- Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
- Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.
- Unbiased estimator of the variance of every treatment contrast.

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
- Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.
- Unbiased estimator of the variance of every treatment contrast.
- There is no need to randomize treatments; the most important differences can be given the lowest variance.

Example of a row-column design

A	В	С	D	Ε	F	G
B	С	D	Ε	F	G	A
C	D	Ε	F	G	Α	В
D	Ε	F	G	A	В	С
E	F	G	A	В	С	D

$$V_{AB} = 1.044 \times \frac{2}{5}(1-\rho-\tau)\sigma^{2}$$
$$V_{AC} = 1.089 \times \frac{2}{5}(1-\rho-\tau)\sigma^{2}$$
$$V_{AD} = 1.091 \times \frac{2}{5}(1-\rho-\tau)\sigma^{2}$$
$$V = 1.075 \times \frac{2}{5}(1-\rho-\tau)\sigma^{2}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ■ ●○○

Example of a row-column design

A	B	С	D	Ε	F	G
B	C	D	Ε	F	G	A
C	D	Ε	F	G	A	В
D	E	F	G	A	В	С
E	F	G	A	В	С	D

$$V_{AB} = 1.044 \times \frac{2}{5}(1-\rho-\tau)\sigma^{2}$$

$$V_{AC} = 1.089 \times \frac{2}{5}(1-\rho-\tau)\sigma^{2}$$

$$V_{AD} = 1.091 \times \frac{2}{5}(1-\rho-\tau)\sigma^{2}$$

$$V = 1.075 \times \frac{2}{5}(1-\rho-\tau)\sigma^{2}$$

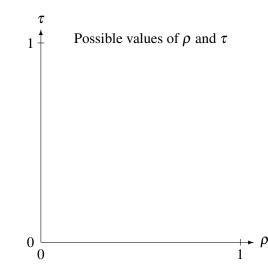
normal method

$$V = \frac{2\sigma^2}{5}(1-\rho)$$

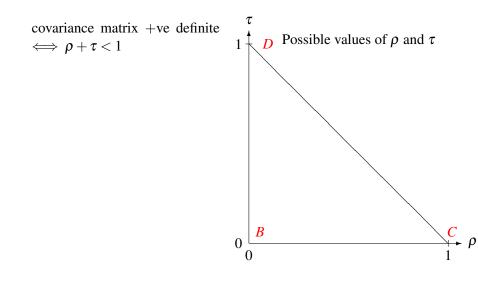
averaged over

randomizations

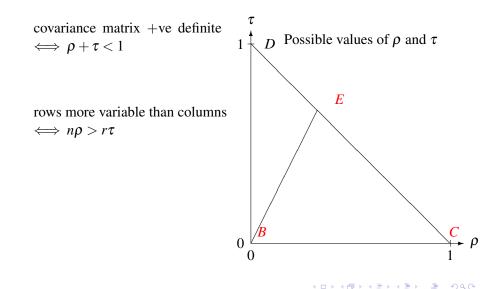
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

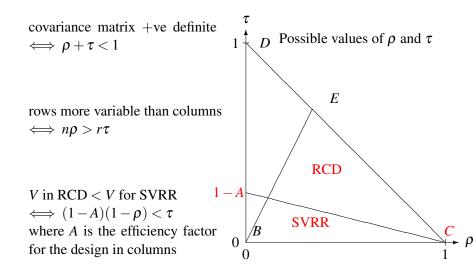


▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □





◆□▶ ◆□▶ ◆三▶ ◆三▶ →三= - のへで

Choose a design with the column concurrences as equal as possible. Randomize rows and columns.

(日)

Choose a design with the column concurrences as equal as possible. Randomize rows and columns.

 $E(MS \text{ residual from complete-block analysis}) = \sigma^2 \left[(1-\rho) + \frac{\tau}{n-1} \right]$

 $E(MS \text{ residual from row-column analysis}) = \sigma^2(1 - \rho - \tau)$

Choose a design with the column concurrences as equal as possible. Randomize rows and columns.

 $E(MS \text{ residual from complete-block analysis}) = \sigma^2 \left[(1-\rho) + \frac{\tau}{n-1} \right]$

 $E(MS residual from row-column analysis) = \sigma^2(1 - \rho - \tau)$

Hence unbiased estimators of $\sigma^2(1-\rho)$ and $\sigma^2\tau$ and of

$$V = \frac{2\sigma^2}{r} \left[(1-\rho) - \frac{(r-1)\tau}{n-1} \right].$$

Choose a design with the column concurrences as equal as possible. Randomize rows and columns.

 $E(MS \text{ residual from complete-block analysis}) = \sigma^2 \left[(1-\rho) + \frac{\tau}{n-1} \right]$

 $E(MS residual from row-column analysis) = \sigma^2(1 - \rho - \tau)$

Hence unbiased estimators of $\sigma^2(1-\rho)$ and $\sigma^2\tau$ and of

$$V = \frac{2\sigma^2}{r} \left[(1-\rho) - \frac{(r-1)\tau}{n-1} \right].$$

But this estimator of V does not have a χ^2 distribution, so how do we do hypothesis tests? Also, there are so few effective df for τ that these estimates have very poor precision.