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Outline

1. Comparing three or more conditions

2. Models with submodels

3. More complicated families of models

2/48



An experiment on dairy cows

An experiment to compare the effects of three different diets on milk
production used 11 Holstein dairy cows at similar points in their
lactation cycles. They were fed the diets for three weeks. During the
third week, the average daily milk production was recorded for each
cow, in pounds per day.

Do the diets have different effects on milk yield?
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Assumptions and vocabulary

Assumption: yield depends on diet.

Model:

yield on cow i =


KA + εi if on diet A
KB + εi if on diet B
KC + εi if on diet C

where ε1, . . . , ε11 are independent (normal) random variables with
mean zero and variance σ2.

Estimate KA as the average yield of cows on diet A
(and similarly for the other diets).
This gives the fit (of the model) for each cow.

data = fit+ residual.
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Data for milk experiment

Diet Yield Diet mean
Data Fit Residual Data2 Fit2 Residual2

A 60.7 61.2 −0.5 3684.49 3745.44 0.25
A 59.7 61.2 −1.5 3564.09 3745.44 2.25
A 61.9 61.2 0.7 3831.61 3745.44 0.49
A 62.5 61.2 1.3 3906.25 3645.44 1.69
B 55.6 54.3 1.3 3091.36 2948.49 1.69
B 52.9 54.3 −1.4 2798.41 2948.49 1.96
B 52.7 54.3 −1.6 2777.29 2948.49 2.56
B 56.0 54.3 1.7 3136.00 2948.49 2.89
C 62.8 58.2 4.6 3943.84 3387.24 21.16
C 55.8 58.2 −2.4 3113.64 3387.24 5.76
C 56.0 58.2 −2.2 3136.00 3387.24 4.84

36982.98 36937.44 45.54
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Sums of squares: I

Pythagoras’ Theorem (in 11 dimensions) shows that

sum of the squares of data =
sum of squares of fits+ sum of squares of residuals

sum of the squares of fits =
(mean for diet A)2×number of cows on diet A

+(mean for diet B)2×number of cows on diet B

+(mean for diet C)2×number of cows on diet C

so the sum of squares of residuals can be calculated simply as

sum of squares of data− sum of squares of fits.
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Sums of squares: II

Number of data 11
Number of fitted parameters 3
Difference 8

Theory predicts that the sum of squares of residuals is a
random variable with mean 8σ2.

So we can estimate σ2 by

sum of squares of residuals
8

This is called the residual mean square.
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Null and alternative hypotheses

Model: yield on cow i =


KA + εi if on diet A
KB + εi if on diet B
KC + εi if on diet C

↙ ↘
KA = KB = KC KA, KB and KC are not all the same

there is no difference
between the diets

null hypothesis alternative hypothesis
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Keep on splitting it up

original data
dimension SUM(data2)

11 36982.98

���)
PPPq

fit for 3 diets
dimension SUM(fit2)

3 36937.44

residuals
dimension SUM(residual2)

8 45.54

@
@

@
@R

�
�

�
�	

fit for null hypothesis
dimension 11× (overall mean)2

1 36841.78

extra for alternative hypothesis
dimension sum of squares for diets

2 95.66

E((residual SS)/8) = σ2

If the null hypothesis is true, E((diets SS)/2) = σ2
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Analysis-of-variance table: I

Source Dimension Sum of squares

Mean square Ratio P

null 1 36841.78
diets 2 95.66

47.83 8.40 0.01

residual 8 45.54

5.69

Total 11 36982.98

If the null hypothesis is true then the two mean squares should be
about the same size. Are they?

Find their ratio!

If the null hypothesis is true and the data are normal then this ratio
should have an F distribution with 2 and 8 degrees of freedom
(sometimes written F2

8). Then the probability that the ratio is 8.40 or
higher is approximately 0.01 (I looked this up in statistical tables).
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Analysis-of-variance table: II

Source Dimension

df

Sum of squares Mean square Ratio P
null 1 36841.78
diets 2 95.66 47.83 8.40 0.01
residual 8 45.54 5.68
Total 11

10

36982.98

141.20

Some conventions:

I Write ‘degrees of freedom’ or ‘df’ of ‘d.f.’ instead of
‘dimension’.

I We never use the first row, so omit it:
then we have adjust the totals to match.

I Your software may write ‘variance ratio’ or ‘V.R.’ or ‘F’ instead
of ‘Ratio’;
it may write ‘Prob’ or ‘F.pr.’ instead of ‘P’.
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Interpreting and reporting the results, in general

I If the Ratio is huge and P < 0.05, we can reject the null
hypothesis at the 5% significance level.

We conclude that there are differences between the conditions.
Report the estimates of the effects of the conditions (these are
just the averages).
It is good practice to report the standard error of a difference as
well.

I If Ratio > 3 but P > 0.05 then we cannot reject the null
hypothesis.
This does not mean that the null hypothesis is true; it means that
you need to gather more data.

I If 1/10 < Ratio and P > 0.05 then we cannot reject the null
hypothesis. Gathering more data may produce a similar
conclusion.

I If Ratio < 1/10 then this is extremely unlikely. There may be
systematic errors in your data.
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Reporting the results of the diet experiment

Source df Sum of squares Mean square Ratio P
diets 2 95.66 47.83 8.40 0.01
residual 8 45.54 5.68
Total 10 141.20

We can reject the null hypothesis at the 1% level of significance: we
conclude that the different diets have different effects on milk yield.

Table of means
Diet A Diet B Diet C
61.2 54.3 58.2

Standard error of a difference =

√(
1
4

+
1
4

)
5.68 = 1.69 for A v B

Standard error of a difference =

√(
1
4

+
1
3

)
5.68 = 1.82 for A v C, B v C
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Summary: creating the anova table

Using n data to compare m conditions, with ri data for condition i.

df for total = n−1

df for conditions = m−1

df for residual = (n−1)− (m−1) = n−m

SS for total = sum of (data)2−n(overall mean)2

SS for conditions = ∑
i

ri(mean for condition i)2−n(overall mean)2

SS for residual = SS for total−SS for conditions

(mean square) MS = SS/df (for both residual and conditions)

Ratio =
MS for conditions

MS for residual
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Comments

I It is quite easy to do these calculations by hand,
or in a spreadsheet:
then you will need to use tables of the F distribution to get the
P-value.

I All statistical software can calculate anova tables and give the
P-value,
but you need to learn how to use it and what its conventions are
for labelling the output.

I Some people show the columns in a different order,
or omit some of them.

I If you want to check for normality, you should use the residuals,
not the original data.
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A diagram

x

x

x

all data
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3
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End of Part I

Any questions?
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An experiment about protecting metal

An experiment was conducted to compare two protective dyes for
metal, both with each other and with ‘no dye’. Ten braided metal
cords were broken into three pieces. The three pieces of each cord
were randomly allocated to the three treatments. After the dyes had
been applied, the cords were left to weather for a fixed time, then their
strengths were measured, and recorded as a percentage of the nominal
strength specification.
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Assumptions

Assumption: strength depends additively on dye and cord.

Model:

strength of piece of cord i with dye j = ai +bj + εij

for i = 1, . . . , 10 and j = 1, . . . , 3,
where ε1,1, . . . , ε10,3 are independent (normal) random variables with
mean zero and variance σ2.

I want to find out if b1, b2 and b3 are different, and to estimate them.
I suspect that a1, . . . , a10 are different but I do not really care.
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A submodel of the model

Model: strength of piece of cord i with dye j = ai +bj + εij

for i = 1, . . . , 10 and j = 1, . . . , 3.

Submodel: strength of piece of cord i with dye j = ai + εij

for i = 1, . . . , 10 and j = 1, . . . , 3.

The submodel is a special case of the first model.

Null hypothesis: the submodel is true.
Alternative hypothesis: the first model is true but the submodel is not.
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Fits and dimensions for both models

Model: strength of piece of cord i with dye j = ai +bj + εij

Submodel: strength of piece of cord i with dye j = ai + εij

for i = 1, . . . , 10 and j = 1, . . . , 3.

In the submodel, the fit for piece of cord i with dye j = average of cord i.

Dimension of the submodel = 10.

In the first model, the fit for piece of cord i with dye j =
average of cord i+ average of dye j−overall average

Warning: this simple method does not work unless each dye occurs on
each cord equally often.

Dimension of first model = 10+3−1 = 12

because ai +bj = (ai +1)+(bj−1).
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Another diagram
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Take differences along each edge.
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Analysis of variance for dye experiment

Source df Sum of squares Mean square Ratio P
cords 9 647.90
dyes 2 122.65 61.32 3.92 0.0386
residual 18 281.85 15.66
Total 29 1052.40

We can reject the null hypothesis at the 5% level of significance:
we conclude that the different dyes have different effects on metal
strength.

Table of means
No dye Dye F Dye G
96.67 99.29 101.62

Standard error of a difference =

√(
1

10
+

1
10

)
15.66 = 1.77
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Warnings about software

Source df Sum of squares Mean square Ratio P
cords 9 647.90

72.00 4.60 0.0029

dyes 2 122.65 61.32 3.92 0.0386
residual 18 281.85 15.66
Total 29 1052.40

I Most software will assume that you are also interested in the
differences between cords, and will fill in the row for cords in the
anova table.

I If each dye does not occur on each cord equally often,
the software may produce different sums of squares from those
that I recommend here.
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Warning about practice

Source df Sum of squares Mean square Ratio P
cords 9 647.90
dyes 2 122.65 61.32 3.92 0.0386
residual 18 281.85 15.66
Total 29 1052.40

The experimenters did well to make sure that each cord had a piece
used for each dye, but they were not interested in the cords, so they
ignored them in the data analysis.

Source df Sum of squares Mean square Ratio P
dyes 2 122.65 61.32 1.78 0.1879
residual 27 929.75 34.44
Total 29 1052.40

They were unable to reject the hypothesis of no difference between
the dyes.
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An intermediate model: to dye or not to dye

Model: strength of piece of cord i with dye j = ai +bj + εij

Intermediate model:

strength of piece of cord i with dye j =

{
ai + εij if dye j is ‘no dye’
ai +d + εij if dye j is a real dye

Submodel: strength of piece of cord i with dye j = ai + εij

The submodel is a special case of the intermediate model,
and the intermediate model is a special case of the first model.
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All models on one diagram
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Better analysis of variance for dye experiment: I

Source df Sum of squares Mean square Ratio P
cords 9 647.90
dye/not 1 95.51 95.51 6.10 0.0238
real dyes 1 27.14 27.14 1.73 0.2049
residual 18 281.85 15.66
Total 29 1052.40

First we compare the full model with the intermediate model.
At the 5% level of significance we cannot reject the hypothesis that
there is no difference between the two real dyes. So we simplify our
assumption to the intermediate model.

Then we compare the intermediate model to the submodel.
At the 5% level of significance we can reject the hypothesis that
‘no dye’ has the same effect as real dye. We conclude that applying
dyes does affect metal strength. We cannot simplify our assumption to
the submodel.
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Better analysis of variance for dye experiment: II

Source df Sum of squares Mean square Ratio P
cords 9 647.90
dye/not 1 95.51 95.51 6.10 0.0238
real dyes 1 27.14 27.14 1.73 0.2049
residual 18 281.85 15.66
Total 29 1052.40

Table of means
No dye Dye F or Dye G
96.67 100.46

Standard error of difference =

√(
1

10
+

1
20

)
15.66 = 1.53
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An experiment with a quantitative factor

An experiment on forage crops compared five seed mixtures in the
presence and absence of nitrogen fertilizer. All ten combinations were
grown in plots in five different fields. For each crop mixture in each
field, the recorded response is improvement in yield, in tons per acre,
if fertilizer is added.

Fields are like cords: we do not care about their differences.

Crop mixtures are like diets or dyes: we are interested in their
differences.

Crop mixtures are not like diets and dyes, because the levels are
quantitative:

100% oats 75% oats 50% oats 25% oats 0% oats
0% vetch 25% vetch 50% vetch 75% vetch 100% vetch
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An intermediate model: linear in vetch
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Intermediate model: improvement = field parameter + linear(% vetch)
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Diagram of models
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Another warning about practice

In the forage crops example, almost all the differences between the
mixtures can be explained as a linear function of the percentage of
vetch.

Source df Sum of squares Mean square Ratio
fields
linear in vetch 1 0.2663 0.2663 6.62
mixtures 3 0.0254 0.0085 0.21
residual 0.0402

The first statistician who analysed these data did it in the simple way:

Source df Sum of squares Mean square Ratio
fields
mixtures 4 0.2917 0.0729 1.81
residual 0.0402

and concluded that there was not enough evidence that the mixtures
had different effects.
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Polynomial models

Suppose that we measure quantities xi and yi on item i,
for i = 1, . . . , n.
We want a model that predicts y as a function of x.
We might try a cubic polynomial:

yi = a+bxi + cx2
i +dx3

i + εi.

A special case is the quadratic polynomial:

yi = e+ fxi +gx2
i + εi,

and a special case of that is the straight line:

yi = h+ kxi + εi.
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Diagram of polynomial models
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Warning: the best-fitting
quadratic polynomial is
not usually obtained by
taking the best-fitting
cubic polynomial and
removing the term in x3
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Creating the anova table for a chain of models

Your software may be able to do this.

1. Draw the the diagram showing all the models.

2. Show the dimension of each model.

3. For each model, fit it, and find either its residual sum of squares
or the sum of the squares of the fits.

4. Each line of the diagram corresponds to a difference between
models. For each line, calculate

4.1 df = difference in dimensions
4.2 SS = difference in residual sums of squares
4.3 MS = SS/df.

5. Each row of the anova table corresponds to a line on the diagram,
but the top-to-bottom order is reversed.

6. The bottom row gives the residual MS; divide every other MS by
this.
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Interpreting the anova table for a chain of models

Start at the bottom.
The bottom row gives the residual.
The next row up compares the largest model with the second-largest.

If the P-value is “small”, then we cannot simplify the model: report
that we need the largest model and estimate its parameters.
If the P-value is “large”, then we can simplify the model, so move up
to the next row.
Continue like this until the model cannot be simplified any further: at
this stage, report this model and estimate its parameters.
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End of Part II

Any questions?
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An experiment to investigate combinations of two factors

Eight newly-hatched chicks took part in a feeding experiment. Four
different feeds (A, B, C and D) were made available to two chicks
each. The protein in feeds A and B was groundnuts, while the protein
in feeds C and D was soya bean. Moreover, feeds B and D contained
added fishmeal.

The chicks were weighed (in gm) at the end of six weeks.

protein groundnuts soya bean
no added fishmeal A C

410 393 443 441
added fishmeal B D

442 424 500 479
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Some models

protein groundnuts soya bean
no added fishmeal A C

KA KC

a1 a2
b1 b1

a1 +b1 a2 +b1

added fishmeal B D
KB KD

a1 a2
b2 b2

a1 +b2 a2 +b2

One model: weight depends on diet (dimension 4).

Special case (protein): KA = KB = a1 and KC = KD = a2 (dim 2).
Special case (fishmeal): KA = KC = b1 and KB = KD = b2 (dim 2).
Very special case: KA = KB = KC = KD (dimension 1).
The additive model (dimension 2+2−1 = 3) is intermediate between
both special cases and the full model.
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Diagram of models
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Anova for chick-feeding experiment: I

Source df Sum of squares Mean square Ratio P
protein 1 4704.5 4704.50 35.57 0.004
fishmeal 1 3120.5 3120.50 23.60 0.0083
diets 1 128.0 128.00 0.97 0.3804
residual 4 529.0 132.25
Total 7 8482.0

First we compare the full model with the additive model. At the 5%
level of significance we cannot reject the hypothesis that the additive
model is true.
This means that the difference caused by adding fishmeal is the same
for both proteins. We say that “fishmeal does not interact with
protein” or “there is no interaction between the two factors”.
So we simplify our assumption to the additive model.
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Anova for chick-feeding experiment: II

Source df Sum of squares Mean square Ratio P
protein 1 4704.5 4704.50 35.57 0.004
fishmeal 1 3120.5 3120.50 23.60 0.0083
interaction 1 128.0 128.00 0.97 0.3804
residual 4 529.0 132.25
Total 7 8482.0

Then we compare the additive model to both submodels.
At the 5% level of significance we can reject the hypothesis that there
is no difference between the proteins, and we can reject the hypothesis
that there is no difference between adding fishmeal and not.

Table of means
groundnuts soya bean

417.25 465.75

Table of means
no added fishmeal added fishmeal

421.75 461.25
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Colour and size

Six types of seed (two colours and three sizes) for a certain plant were
compared. For each type, a known number were planted in each of
three pots, and the percentage which germinated was recorded.

Colour Size
small medium large

brown 73.0 89.0 84.7
red 22.0 26.3 48.7

(Data are average of three pots.)
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Diagram of models
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Anova for germination experiment

Source df Sum of squares Mean square Ratio P
colour 1 11200.06 11200.06 165.06 < 0.0001
size 2 1103.44 551.72 8.13 0.0059
colour × size 2 536.12 268.06 3.95 0.0481
residual 12 814.23 67.85
Total 17 13653.85

First we compare the full model with the additive model. This is often
called ‘testing for interaction’. At the 5% level of significance we
reject the hypothesis that the additive model is true. This means that
the difference between the sizes is not the same for both colours.

Present the table of means for the six types, and stop there, because
we cannot simplify the model.

Is it useful to present the tables of means for colours and for sizes?
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Warning about unequal replication

If every combination of levels of the two factors occurs equally often
then

I fits are obtained from simple averages

I sums of squares are obtained from simple averages
I all software presents the same anova table
I different routes from the top of the model diagram to the bottom

all give the same conclusions.

If they don’t occur equally often then

I you need software to calculate the fits and the sums of squares
I different software presents different sums of squares, and you

have to know how to interpret it
I different routes from the top of the model diagram can

sometimes give contradictory conclusions.
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End of Part III

Any questions?
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