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Abstract

In a half-diallel experiment, the treatments are effectively the
unordered pairs from a set of parental lines.

If the response can be modelled as the analogue of main effects
(called general combining ability in the diallel case)
then the experiment need not include all pairs.

Then the experiment becomes formally equivalent to an
incomplete-block design in which only block totals are measured.

Except in special cases, designs which are optimal for one situation
may be very bad for the other one. Although Curnow noted this forty
years ago, his results seem to have been ignored.

I shall state a result which gives optimality in some special cases and
use this as a heuristic guide to optimality more generally.



Abstract

In a half-diallel experiment, the treatments are effectively the
unordered pairs from a set of parental lines.

If the response can be modelled as the analogue of main effects
(called general combining ability in the diallel case)
then the experiment need not include all pairs.

Then the experiment becomes formally equivalent to an
incomplete-block design in which only block totals are measured.

Except in special cases, designs which are optimal for one situation
may be very bad for the other one. Although Curnow noted this forty
years ago, his results seem to have been ignored.

I shall state a result which gives optimality in some special cases and
use this as a heuristic guide to optimality more generally.



Abstract

In a half-diallel experiment, the treatments are effectively the
unordered pairs from a set of parental lines.

If the response can be modelled as the analogue of main effects
(called general combining ability in the diallel case)
then the experiment need not include all pairs.

Then the experiment becomes formally equivalent to an
incomplete-block design in which only block totals are measured.

Except in special cases, designs which are optimal for one situation
may be very bad for the other one. Although Curnow noted this forty
years ago, his results seem to have been ignored.

I shall state a result which gives optimality in some special cases and
use this as a heuristic guide to optimality more generally.



Abstract

In a half-diallel experiment, the treatments are effectively the
unordered pairs from a set of parental lines.

If the response can be modelled as the analogue of main effects
(called general combining ability in the diallel case)
then the experiment need not include all pairs.

Then the experiment becomes formally equivalent to an
incomplete-block design in which only block totals are measured.

Except in special cases, designs which are optimal for one situation
may be very bad for the other one. Although Curnow noted this forty
years ago, his results seem to have been ignored.

I shall state a result which gives optimality in some special cases and
use this as a heuristic guide to optimality more generally.



Abstract

In a half-diallel experiment, the treatments are effectively the
unordered pairs from a set of parental lines.

If the response can be modelled as the analogue of main effects
(called general combining ability in the diallel case)
then the experiment need not include all pairs.

Then the experiment becomes formally equivalent to an
incomplete-block design in which only block totals are measured.

Except in special cases, designs which are optimal for one situation
may be very bad for the other one. Although Curnow noted this forty
years ago, his results seem to have been ignored.

I shall state a result which gives optimality in some special cases and
use this as a heuristic guide to optimality more generally.



Model

Treatments are unordered pairs from n parental lines,
because {i, j} represents the cross between line i and line j.

If we assume that the specific combining ability is zero,
then the model is

E
(
Y{i,j}

)
= αi +αj

where αi is the general combining ability for parental type i.
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Design

A design for this model is formally equivalent to
an incomplete-block design for n treatments in blocks of size 2
where we can analyse only the block totals.

Kempthorne and Curnow noticed this in 1961.

If there are n parental lines and the replication is r,
the design can be represented by a graph with n vertices and valency r:
each edge represents a cross that is used in the experiment.
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Example of a design shown as a graph

The pairs are:
{1,2}, {1,4}, {1,8}, {2,3}, {2,5}, {3,4} {3,6}, {4,7}, {5,6},
{5,8}, {6,7}, {7,8}.
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Balance

An incomplete-block design is said to be balanced if every pair of
distinct treatments occurs in the same number of blocks.

When the blocks have size two, a design can be balanced only if all
possible pairs occur as blocks, the same number of times.

For the model with no specific combining ability we should be able to
estimate the general combining abilities from far fewer blocks.

How should we choose which pairs to use?
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What makes an incomplete-block design good? (1)

Put λij = number of blocks containing i and j if i 6= j

λii = r

Λ = [λij].

The matrix I− 1
2r

Λ has eigenvalue 0 on the all-1 vector.

The other eigenvalues ε1, ε2, . . . , εn−1 are called the
canonical efficiency factors in the within-blocks stratum.

Put A = harmonic mean of ε1, ε2, . . . , εn−1.

Then the average pairwise variance is
1
rA

σ
2.
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What makes an incomplete-block design good? (2)

There are canonical efficiency factors

ε1, ε2, . . . , εn−1 in the within-blocks stratum
ε∗1 , ε∗2 , . . . , ε∗n−1 in the between-blocks stratum

where ε∗i = 1− εi.

For the usual (within-blocks) analysis,
an incomplete-block design is optimal if it maximizes

A = harmonic mean of ε1, ε2, . . . , εn−1

For our analysis (using only block totals), an incomplete-block design
is optimal if it maximizes

A∗ = harmonic mean of ε
∗
1 , ε

∗
2 , . . . , ε

∗
n−1.
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Good and bad news

Easy Theorem

balance
m

ε1 = · · ·= εn−1 ⇐⇒ ε∗1 = · · ·= ε∗n−1
m m

A is maximal A∗ is maximal

Warning!

If there is no balanced incomplete block design
(for the given numbers of blocks, treatments and block size),
then a design which is optimal for the usual analysis
may not be optimal for the analysis of block totals.

Curnow noticed this in 1963 when he examined some small designs.
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All designs with n = 8 and r = 3
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One extreme

m4

m1

m3m2
m8

m5

m7m6
The design is disconnected.

The difference between the two components is not estimable within
blocks.

But this design is optimal for the analysis using block totals.
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Almost the other extreme
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The design is bipartite because every edge joins an even treatment to
an odd treatment.

The difference between even and odd is not estimable from the block
totals.

But this design is 2nd best for the usual within-blocks analysis.
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Theorem for incomplete-block designs
with the usual analysis

In 1991, Cheng and Bailey proved that, for the usual analysis:
if

I ε1, . . . , εn−1 take only two values, one of which is 1, and
I the design is partially balanced with two associate classes,

and concurrences differing by 1,

then A is maximal.

(Note that εi = 1 implies that ε∗i = 0 and so the corresponding
contrast is not estimable from the block totals.)

(The design is also E-optimal and D-optimal: in fact, all symmetric
convex functions of the eigenvalues are maximized.)
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Theorem for incomplete-block designs
with the analysis using only block totals

The same proof shows that, for the analysis using block totals,

if the design is a disjoint union of complete graphs of the same size
then A∗ is maximal.

(Some ε∗ = 1 ⇒ the design is disconnected;
the only disconnected association scheme with two associate classes
is the disjoint union of complete graphs of the same size.)

(Note that the contrasts between the components are not estimable
within-blocks.)

(E∗, D∗ etc are also maximal.)

Mukerjee proved a similar result for E-optimality in 1997.
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Example with n = 15 and r = 4
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Heuristic

For n parental lines, each involved in r crosses,
let q be the smallest number such that

I r +1 divides n−q

I if r is odd then q is even
I q = 0 or q > r +1.

Then the optimal design should be of the following form:

I
n−q
r +1

copies of the complete graph on r +1 vertices;

I a connected graph with q vertices and valency r,

with no pair repeated.

Exception

For r = 2 and n = 3m+10, use m triangles and 2 pentagons.
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Example for n = 15 and r = 6

The best design for the usual
analysis is a triangular partially
balanced design.

When used for an analysis by
block totals, the pairwise vari-
ances are

0.4762 45 times
0.3810 60 times
0.4218 average

and A∗ = 0.3952.

The heuristic choice consists of
one complete graph on 7 treat-
ments and a graph on 8 points
which has all edges except for
diagonal pairs.

When used for an analysis by block
totals, the pairwise variances are

0.4167 24 times
0.4000 21 times
0.3709 56 times
0.3333 4 times
0.3857 average

and A∗ = 0.4321.
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Tomatoes in glasshouses





Possible extensions

In experiments on tomatoes in glasshouses, several plants are grown
close together. Each is tied to a vertical string. When the stalk reaches
the top of the stake, it is tied around a horizontal rail. So several
plants are tied around the same rail, and their fruit is all mixed up.

I have always said that the plants which are mixed up like this should
all be of the same variety. But perhaps we could have k different
varieties: then we would measure a response whose expectation is

α1 +α2 + · · ·+αk.

Then the problem of designing such experiments is formally
equivalent to designing experiments in incomplete blocks of size k.

However, the efficiency criteria are different for the two situations. If
a balanced design exists it is optimal for both situations; otherwise, it
can happen that the design that is most efficient for one situation is
worst for the other. Thus conventional lists of optimal block designs
must be treated with care.
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