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A small microarray experiment

8 Slides
2 Dyes
> 96 Positions
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A small microarray experiment

8 Slides
2 Dyes
> 96 Positions

1+4 Treatmentsxf
96 Genes

/

» There is 1 ‘control’ treatment (labelled 0) and 4 other treatments.

» O shows that we need to know a specific (non-orthogonal) design for
the allocation of the treatments to the dye-slide combinations, such as

slides
1 23 45 6 7 8
red 0(1(012|0|3]|0]4
green |1 0({2]|0(3]0(4|0
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Representation of the design as an oriented graph

Treatments are vertices; slides are edges, oriented from green to red.

slides
1 2 3 45 6 7 8 double
red 0/1/0]2|0(3]|0/4 reference
green | 1/0(2](0(3/0(4]0
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Representation of the design as an oriented graph

Treatments are vertices; slides are edges, oriented from green to red.

red
green

red
green

slides
1 2 3 45 7 8
0[{1{0|2/0 0|4
1/0(2]0]3 410
slides
1 2 3 45 7 8
0/2(0(4|2 411
1/0(3]|0]1 314
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Representation of the design as an oriented graph

Treatments are vertices; slides are edges, oriented from green to red.

slides
1 2 3 45 6 7 8 double
red 0/1/0]2|0(3]|0/4 reference
green | 1/0(2](0(3/0(4]0
slides
1 2 3 45 6 17
red 27042341 wheel

green |1 |03]0]1]2]3

Which is better?
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Assume that the logarithm of the intensity of treatment i coloured
with dye / in block k has expected value
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and variance 2, independent of all other responses.
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Model

t treatments b slides (call these “blocks™) 2 dyes

Assume that the logarithm of the intensity of treatment i coloured
with dye / in block k has expected value

Ti+ B+ &
and variance 2, independent of all other responses.

To estimate all the 7; — 7;, we need b > 1 — 1.

4/76



Optimality criteria

If there are  we want V5, the variance of and we want the confidence
just 2 the estimator of 7; — 7», to interval I}, for 7, — 7> to be
treatments, be small small.
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Optimality criteria

If there are
just 2
treatments,

In general,

we want V1, the variance of
the estimator of 7; — T, to
be small

a design is A-optimal if it
minimizes the sum of the
variances of the estimators
of the pairwise differences;

and we want the confidence
interval I, for T; — 7 to be
small.

Iy is proportional to 1/ Vy;.

a design is D-optimal if it
minimizes the volume of the
confidence ellipsoid for the
vector (7y,...,T;) subject to
Y1, =0.
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Optimality criteria

If there are
just 2
treatments,

In general,

we want V1, the variance of
the estimator of 7; — T, to
be small

a design is A-optimal if it
minimizes the sum of the
variances of the estimators
of the pairwise differences;

If t = 2 then A-optimal = D-optimal.

and we want the confidence
interval I, for T; — 7 to be
small.

Iy is proportional to 1/ Vy;.

a design is D-optimal if it
minimizes the volume of the
confidence ellipsoid for the
vector (7y,...,T;) subject to
Y1, =0.
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Temporarily ignore the dyes

‘We will come back to them later.
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Experience with block designs of many sizes

» Designs which are good on the A-criterion are also good on the
D-criterion . ..
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Experience with block designs of many sizes

» Designs which are good on the A-criterion are also good on the
D-criterion . ..

> ... and vice versa.
» The best designs have equal replication.
» The best designs are symmetric.

» Vi, the variance of the estimator of 7; — 7;, is usually smaller if
the distance between vertices i and j in the graph is smaller.
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Typical behaviour of the optimality criteria

Ep
+F
0.5 +
++ +
Tas
+ +
s +
04 T +
0.3 | i | %
0.1 0.2 0.3 0.4 0.5 Ep

Optimality criteria for all connected equireplicate designs with
8 treatments in 12 blocks of size 2:
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Typical behaviour of the optimality criteria

Ep
+F
0.5 +
++ +
Tas
+ +
s +
04 T +
0.3 | i | %
0.1 0.2 0.3 0.4 0.5 Ep

Optimality criteria for all connected equireplicate designs with
8 treatments in 12 blocks of size 2: both criteria are normalized to lie
between 0 (worst, for designs where not everything can be estimated)

and 1 (best, for designs consisting a single large block) o



What happens when b = ¢?

Computer investigation by
» Jones and Eccleston, J. Roy. Statist. Soc. B (1980)
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What happens when b = ¢?

Computer investigation by
» Jones and Eccleston, J. Roy. Statist. Soc. B (1980)
» Kerr and Churchill, Biostatistics (2001)
» Wit, Nobile and Khanin, Applied Statistics (2005)
» Ceraudo (2005).

Analytical investigation by
» Tjur, Annals of Statistics (1991)
» Bailey, Applied Statistics (2007)
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Optimal designs when b =1t
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D-optimality

Cheng (1978), after Gaffke (1978), after Kirchhoff (1847):
(t x number of spanning trees)]/ (=1)

E =
P 27
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D-optimality

Cheng (1978), after Gaftke (1978), after Kirchhoff (1847):
(t x number of spanning trees)]/(t_1>

E =
b 2F

number of spanning trees =
number of ways of removing b — 4+ 1 edges without disconnecting
the graph, (which is easy to calculate by hand when b — t is small)

10 spanning trees 4 spanning trees
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D-optimality

Cheng (1978), after Gaftke (1978), after Kirchhoff (1847):
(t x number of spanning trees)]/(t_1>

E =
b 2F

number of spanning trees =
number of ways of removing b — 4+ 1 edges without disconnecting
the graph, (which is easy to calculate by hand when b — t is small)

10 spanning trees 4 spanning trees

The loop design is uniquely D-optimal when b = .
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A-optimality

If b = ¢, the graph contains a single circuit.
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A-optimality

If b = ¢, the graph contains a single circuit.

Let V; = variance of estimator of T; — 7. ©
0. @ |® O
(O—0—D
Q) (S
—@

For a given size of circuit, the total variance is minimized when
everything outside the circuit is attached to the same vertex of the
circuit.
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Leaves attached to the same vertex of the circuit

Average pairwise variance is a cubic function of the size of the circuit.
1%
5 4

size of circuit
2 j : % : :
3 6 9 12 15
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Leaves attached to the same vertex of the circuit

Average pairwise variance is a cubic function of the size of the circuit.
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Leaves attached to the same vertex of the circuit

Average pairwise variance is a cubic function of the size of the circuit.

1%
5*
4*
X
x X X t=9
3Ak X X X X l‘:s
X
x X X
x t=17
>< p— . . .
t=6 size of circuit
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Leaves attached to the same vertex of the circuit

Average pairwise variance is a cubic function of the size of the circuit.

1%
5*
4*
y X X X t=10
X
£ % x5 x X XX 4=9
X X
31 Xox XXX g
X X
X y X t=7
>< p— . . .
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Leaves attached to the same vertex of the circuit

Average pairwise variance is a cubic function of the size of the circuit.

1%
SAV
4 X _
4 % tr=11
X% X 1=10
$X )
§ g % £ % x X x 4=9
X X
31 Xox XXX g
X
*x X
% t="7
>< p— . . .
t=6 size of circuit
2 % % % % %
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Leaves attached to the same vertex of the circuit

Average pairwise variance is a cubic function of the size of the circuit.

1%
SAV
x X t=12
X
47 v % X X =11
X
g X% XX 1=10
X X
2B B R R
31 Xox XXX g
X
x X x X
% t="77
X —
t=6 size of circuit
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Leaves attached to the same vertex of the circuit

Average pairwise variance is a cubic function of the size of the circuit.

v
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Leaves attached to the same vertex of the circuit

Average pairwise variance is a cubic function of the size of the circuit.

v
5*
X X t=13
© X
X =
X X r=12
47 ¥ X ox X =11
% £ 5 x x  i=10
% § § % X i X X
g 8 % X X t=9
31 Xox XXX g
X
X %
% t=17
X _
t=6 size of circuit
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3 —min ¢ 9 12 15
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Optimality criteria for designs for 20 treatments in
20 blocks, using the A-optimal design for each size of

circuit
Ep
0.35 +—
>§<X><X X % y
X % X y X s

%<
X

0.30 —+ X

| % % %
0.10 0.15 0.20 0.25 030 Ea

The two criteria give essentially reverse rankings.
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Assigning colours to a circuit with leaves

The difference between the colours can be
estimated only from the circuit.
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Assigning colours to a circuit with leaves

The difference between the colours can be
estimated only from the circuit.

More leaves — smaller circuit — larger ©
variance for colour difference.

Variance between circuit nodes increases

unless the arrows are directed around the (D © @D
circuit. & )
Variance between a leaf and a circuit node %) &

increases because the leaf occurs with
only one colour.

Variance between leaves increases unless
they all have the same colour.
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What happens when b =1¢+17

A similar analysis shows that the A-optimality and D-optimality
criteria conflict when ¢ > 12.
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Optimal designs when b =r+1

t=38 t=9 t=10

o T
o T
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Optimal designs when b =1+ 1

A-optimal ®‘< @‘é
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What happens for larger values of b —1?

Bad news theorem
Given any fixed value of b —t, there is a threshold T such that when

t > T the A- and D-optimality criteria conflict.
When ¢ > T, the average valency (replication) is much less than 3,

so there must be many vertices of valency 2 or many vertices of
valency 1 (leaves).
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What happens for larger values of b —1?

Bad news theorem
Given any fixed value of b —t, there is a threshold T such that when
t > T the A- and D-optimality criteria conflict.

When ¢ > T, the average valency (replication) is much less than 3,
so there must be many vertices of valency 2 or many vertices of
valency 1 (leaves).

Many vertices of valency 2 = long paths = large distances =
large pairwise variances = poor design on A-criterion.

Many leaves = few spanning trees = poor design on D-criterion.

A-better designs have many leaves attached to single vertex of some
small graph, whereas the D-better designs have no leaves.

1R/26



How can we construct efficient designs?

Good news theorem

If a given graph has no vertices of valency 1 or 2, then

inserting 1 or 2 (or sometimes 3) vertices into the edges of that graph
gives a lower average pairwise variance than

attaching the extra vertices to a single vertex of that graph.
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Strategy for choosing a design when b > 9¢/8

1. Choose the best equireplicate design with replication 3
for 2(b — t) treatments in 3(b — ) blocks
(or with replication 4, for b — t treatments in 2(b — r) blocks),
including dye allocation.

2. Insert up to 2 treatments in each edge.
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Choosing a good equireplicate design with replication 4

1. Ignore the colours.
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Choosing a good equireplicate design with replication 4

1. Ignore the colours.

2. Find the best graph with all vertices having valency 4
(smaller problem, can use symmetry to speed up the search).

3. Euler’s Theorem (for bridges of Konigsberg)
says that the arrows can be put on the edges in such a way that
every vertex has two edges coming in and two edges going out.
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Choosing a good equireplicate design with replication 3

1. Divide the treatments into two halves:
“more red” and “more green”.
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Choosing a good equireplicate design with replication 3

1. Divide the treatments into two halves:
“more red” and “more green”.

2. Strategy: make every block contain one treatment from each half.

3. RAB theorem:
the best way to do this is to use the Levi graph of the best design
for 7/2 treatments equally replicated in /2 blocks of size 3.
(Smaller problem.)

4. Using the algorithm from Hall’s Marriage Theorem,
(also Konig’s Theorem)
orient the edges so that
each lower vertex has 2 out-edges and 1 in-edge and
each upper vertex has 1 out-edge and 2 in-edges.

I17/726



Example for 14 treatments with replication 3

23/76



Example for 14 treatments with replication 3

23/76



Example for 14 treatments with replication 3

{
124

o

{
235

ow

[ )
346

[ I

L
457

[ 9

L
156

[ Xe

{
267

[ BN

137

23/76



Example for 14 treatments with replication 3
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Generic designs with bounded pairwise variance

s triangles glued at one vertex
% t=2s+1 b=3s b/t=15
Vii= 1.3362 (same triangle) or 2.6702 (otherwise)
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Generic designs with bounded pairwise variance

s triangles glued at one vertex
t=2s+1 b=3s b/t=15

% Vi = 1.3362 (same triangle) or 2.6702 (otherwise)

double reference design
t=s+1 b=2s b/tx2
Vij= o (control) or 26 (otherwise)

s copies of Ks glued at one vertex
t=4s+1 b=10s b/t~2.5
Vij= 0.862 (same Ks) or 1.602 (otherwise)
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Generic designs with bounded pairwise variance

S

s triangles glued at one vertex
t=2s+1 b=3s b/t=15

Vii= 1.3362 (same triangle) or 2.6762 (otherwise)

double reference design
t=s+1 b=2s b/tx2
Vij= o (control) or 26 (otherwise)

wheel with 2s spokes
t=2s+1 b=4s b/tx2
Vi < 0.962 (control), < 1.862 (otherwise)

s copies of Ks glued at one vertex
t=4s+1 b=10s b/t=~2.5
Vij= 0.862 (same K5s) or 1.602 (otherwise)
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Comparing the wheel design with the double-reference

design

variance

262 i

double
reference

1.502 1

X
X
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O O
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XxXXXXXXXXXXXXXXXXX
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1. Insert vertices with valency 2 into the best graph with valency 3.
» Needs 1.125 < b/t < 1.5.
2. Insert vertices with valency 2 into the best graph with valency 4.
» Needs 1.2 <b/t <2.
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between treatments, but there are more vertices of valency 2.
» In RAB’s experience, never beats previous method.

3. Glue many leaves to a single vertex of some small graph.

» Few spanning trees, but no pairwise variance is bigger than 4c2.
4. Glue many triangles to a single vertex of some small graph.

» Needs b/t~ 1.5.

» Few spanning trees, but no pairwise variance bigger than 2.67672.
5. Use a wheel design.

» Needs b/t ~2.
» No pairwise variance bigger than 1.862.
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