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In a two-phase experiment, treatments are (typically) allocated to
experimental units in the first phase, and the products from those
experimental units are allocated to a second sort of experimental unit
in the second phase. The appropriate data analysis (and therefore the
quality of the overall design) depends on the designs used for the two
phases and on how they fit together.

Usually we want to estimate the most important contrasts with low
variance and with a large number of degrees of freedom for the
appropriate residual. In a two-phase experiment, these criteria may
conflict.

I will discuss some of the issues to think about when designing such
experiments, and show how sometimes Patterson’s design key can
help.
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The systematic design for Phase II (a pair of 6 x 6 Latin squares) is
randomized by randomly permuting sessions, randomly permuting

panellists within each session, and randomly permuting time-orders
within each session. This gives the covariance model

EoPo + EsPs + EspPsp + EstPst + EsprPspr.

Because the design at Phase II has equal replication 12,
the overall covariance matrix for the 216 responses on tastings is

EoPo+EsPs + EspPsp + EstPsT + EsprPspr + 1210Q0 + 1218 QB + 1215 QBL
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Residual degrees of freedom

Lesson

If treatments are applied in Phase I,

the number of degrees of freedom for the relevant residual
cannot increase in Phase I1.

Principle

If treatments are orthogonal to ‘large blocks’ in Phase I,
then those large blocks should be confounded with
“large blocks” in Phase II.
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Factors which are ‘hard to set’ or which must be applied to
large areas

Lesson

If a treatment factor is ‘hard to set’in Phase I,

then it is probably in a Phase I stratum with large variance.
Stratum variances from the two phases are added.

Principle
If a treatment factor is ‘hard to set’ in Phase I,
then it should be allocated to a Phase Il stratum with small variance.
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» Interventions probably has the biggest variance from Phase I,
so try to confound this with a low-variance term in Phase II.
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Some lessons

Lesson

If the design in both phases is orthogonal,

the using the design key gives a simple method of establishing the
confounding.

Lesson

The skeleton anova (decomposition table) shows
EMS for treatment terms and for residual terms,
as well as residual degrees of freedom,

so it is a useful tool for evaluating designs.

Lesson

Equating mean squares to their expectations may give
several inconsistent estimators of the & and 1;,

each with potentially few degrees of freedom.



Data analysis after Phase |l

Query
Is it better to analyse the data with
» ANOVA (for three tiers)
» REML
(but beware!—small degrees of freedom can lead to silly results)
> other mixed model software
(can it cope with the confounding?)
(For example, the single degree of freedom for Ry is part of both
Runs and Animals[Cages |—

does the software give the same result regardless of which is
written down first in the list of random effects?)
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Consequences

Principle
If a treatment term is in a Phase I stratum with large variance,
then it should be allocated to a Phase Il stratum with small variance.

Lesson

» This may force sacrificing some information on
another treatment term at Phase I1.

» This may not be practicable.



Nonorthogonality in Phase |

Query
What should we do if the design used in Phase I is not orthogonal
(in the sense that there are efficiency factors other than 0 and 1)?
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Two-colour microarrays: skeleton anova
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Nonorthogonality in Phase I: revisited

Query
Suppose that, in Phase I, treatment term i is partially confounded,

with a small efficiency factor Ay,
with stratum j, which has a large variance 1);.

At Phase II, should we
> try to confound stratum j with a Phase Il stratum with
small variance, or
> cut our losses on this part of the information about
treatment term i?



Nonorthogonality in Phase |: a special case

Suppose that,

» in Phase I, there is a treatment term that has effiency factors

p in stratum 1 with variance 1
g in stratum 2 with variance 13,

where p+g=1and n; > 1ny;
> the design for Phase II has replication r, there are two Phase II

strata where these Phase I strata might be confounded, but they
cannot both go in the one with the smaller variance.

Label the Phase I strata 1, 2 so that

p m &
g M &.

Query
Should we do this so that & > & or & > &7
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How to confound two pairs of strata from the two phases

tmt efficiency factor Phase I variance Phase II variance

p m>n2) &1
q n2 &

Theorem
Smaller variance is obtained if the Phase Il strata are labelled so that

q_ (M+8)(m+6),
p- (rm+&)(rm+8&)’

Si>& if
. . . 4
in particular, if = >1;
p

(rm+&)(m+&)
(rm+&)(rmi+&)

e 4
&1 <& lfp<



Some treatment factors may be applied only in Phase Il

Principle

Plan the whole experiment in advance,

especially if you want to estimate interactions

between the Phase I treatments and the Phase 11 treatments.
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levels tmts plots pallets times
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FEP] BES],P]EQ]
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Blood (Speed)

2'%

Collection
factors

[ Storage factors J

<

4 People 0 8 Batch’es
4 TimesinP | ° 16 Samples in B

Processing
factors

» Confounding People with Batches increases the variance for

some Storage factors.

» Making People orthogonal to Batches uses up more degrees of

freedom.

» The compromise has a single df for

People Vv Batches, with a variance 2
which is large and different from all 2

other variances (Cheng; Vivacqua).

4 4
64| 0
0 |64




Conclusions: |

When designing a two-phase experiment
(or a multi-stage batch reprocessing experiment)

» design the whole thing in advance;

v

v

v

pay attention to making variance small;

pay attention to residual degrees of freedom;

if treatments are orthogonal to ‘large blocks’ in Phase I,

then those large blocks should be confounded with

“large blocks” in Phase II;

if a treatment term is in a Phase I stratum with large variance

(in particular, if a treatment factor is ‘hard to set’ in Phase I),
then it should be allocated to a Phase II stratum with small
variance.

if a treatment term is partially confounded with more than one
Phase I stratum, and cannot be wholly allocated to a ‘small
variance’ stratum in Phase II, then the best design depends on the
ratios of the stratum variances and on the efficiency factors from
Phase I.



Conclusions: I

When designing a two-phase experiment
(or a multi-stage batch reprocessing experiment),
the following are useful concepts and tools.

» diagrams with panels to show tiers;
» Hasse diagrams to elucidate strata and degrees of freedom;

» the design key method of construction,
which can also be used to elucidate the confounding;

» decomposition tables (skeleton anova)
to assess the qualities of the design.



