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Abstract

In a two-phase experiment, treatments are (typically) allocated to
experimental units in the first phase, and the products from those
experimental units are allocated to a second sort of experimental unit
in the second phase.

The appropriate data analysis (and therefore the
quality of the overall design) depends on the designs used for the two
phases and on how they fit together.

Usually we want to estimate the most important contrasts with low
variance and with a large number of degrees of freedom for the
appropriate residual. In a two-phase experiment, these criteria may
conflict.

I will discuss some of the issues to think about when designing such
experiments, and show how sometimes Patterson’s design key can
help.
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Meatloaves (T. B. Bailey): a tasting experiment
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6 Loaves in B
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3 Sessions
12 Panellists in S
6 Time-orders in S

t -Q
Q
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6 treatments 18 meatloaves 216 tastings

The systematic design for Phase I is randomized by randomly
permuting blocks and randomly permuting loaves within each block.
This gives the covariance model γBLIL + γB(JB− IL)+ γ0(J−JB)
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= ηBLQBL +ηBQB +η0Q0 ← orthogonal idempotents

↑ ↑ ↑︸ ︷︷ ︸
positive
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The systematic design for Phase II (a pair of 6×6 Latin squares) is
randomized by randomly permuting sessions, randomly permuting
panellists within each session, and randomly permuting time-orders
within each session. This gives the covariance model

ξ0P0 +ξSPS +ξSPPSP +ξSTPST +ξSPTPSPT.

Because the design at Phase II has equal replication 12,
the overall covariance matrix for the 216 responses on tastings is

ξ0P0 +ξSPS +ξSPPSP +ξSTPST +ξSPTPSPT +12η0Q̃0 +12ηBQ̃B +12ηBLQ̃BL
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source df

source df source df EMS

Mean 1

Mean 1 Mean 1 ξ0 +12η0

Sessions 2

Blocks 2 ξS +12ηB

Panellists[S] 33

ξSP

Time-orders[S] 15

ξST
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Residual 10 ξSPT +12ηBL

Residual 150 ξSPT
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Residual degrees of freedom

Lesson
If treatments are applied in Phase I,
the number of degrees of freedom for the relevant residual
cannot increase in Phase II.

Principle

If treatments are orthogonal to ‘large blocks’ in Phase I,
then those large blocks should be confounded with
“large blocks” in Phase II.
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Milk storage (Wood, Willams and Speed): anova 2
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Residual 69 ξSJD
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Factors which are ‘hard to set’ or which must be applied to
large areas

Lesson
If a treatment factor is ‘hard to set’in Phase I,
then it is probably in a Phase I stratum with large variance.
Stratum variances from the two phases are added.

Principle

If a treatment factor is ‘hard to set’ in Phase I,
then it should be allocated to a Phase II stratum with small variance.
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I Interventions probably has the biggest variance from Phase I,
so try to confound this with a low-variance term in Phase II.

I If possible, confound the rest of Cages with the same term,
to avoid losing degrees of freedom for the residual.

I If possible, make Tissues and I#T orthogonal to Runs and Labels.

Use 2-level pseudofactors and Patterson’s design key.

I

I ≡ C1
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Ci ≡ Ri +Li

R1 R2 R3
A

A≡ R1

T

T ≡ P+C3

P

P≡ L2

L1 L2 L3
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Proteomics: skeleton anova

units animal-bits treatments
source df source df source df EMS
Mean 1 Mean 1 Mean 1 ξ0 +8η0

Runs 7 Animals[C]1 1 ξR +2ηCA
Positions[A,C]1 2 ξR +2ηCAP
Residual 4 ξR

Labels 7 Animals[C]2 1 ξL +2ηCA
Positions[A,C]2 2 ξL +2ηCAP
Residual 4 ξL

R#L 49 Cages 7 Interventions 1 ξRL +2ηC +q(I)
Residual 6 ξRL +2ηC

Animals[C]3 6 ξRL +2ηCA
Positions[A,C]3 12 Tissues 1 ξRL +2ηCAP +q(T)

I#T 1 ξRL +2ηCAP +q(IT)
Residual 10 ξRL +2ηCAP

Residual 24 ξRL
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Some lessons

Lesson
If the design in both phases is orthogonal,
the using the design key gives a simple method of establishing the
confounding.

Lesson
The skeleton anova (decomposition table) shows
EMS for treatment terms and for residual terms,
as well as residual degrees of freedom,
so it is a useful tool for evaluating designs.

Lesson
Equating mean squares to their expectations may give
several inconsistent estimators of the ξi and ηj,
each with potentially few degrees of freedom.
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Data analysis after Phase II

Query

Is it better to analyse the data with
I ANOVA (for three tiers)
I REML

(but beware!—small degrees of freedom can lead to silly results)
I other mixed model software

(can it cope with the confounding?)
(For example, the single degree of freedom for R1 is part of both
Runs and Animals[Cages]—
does the software give the same result regardless of which is
written down first in the list of random effects?)

?
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Consequences

Principle

If a treatment term is in a Phase I stratum with large variance,
then it should be allocated to a Phase II stratum with small variance.

Lesson

I This may force sacrificing some information on
another treatment term at Phase II.

I This may not be practicable.



Nonorthogonality in Phase I

Query

What should we do if the design used in Phase I is not orthogonal
(in the sense that there are efficiency factors other than 0 and 1)?
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Two-colour microarrays: skeleton anova
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Nonorthogonality in Phase I: revisited

Query

Suppose that, in Phase I, treatment term i is partially confounded,
with a small efficiency factor λij,
with stratum j, which has a large variance ηj.

At Phase II, should we
I try to confound stratum j with a Phase II stratum with

small variance, or
I cut our losses on this part of the information about

treatment term i?
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Nonorthogonality in Phase I: a special case

Suppose that,
I in Phase I, there is a treatment term that has effiency factors

p in stratum 1 with variance η1
q in stratum 2 with variance η2,

where p+q = 1 and η1 > η2;
I the design for Phase II has replication r, there are two Phase II

strata where these Phase I strata might be confounded, but they
cannot both go in the one with the smaller variance.

Label the Phase I strata 1, 2 so that

p η1 ξ1
q η2 ξ2.

Query

Should we do this so that ξ1 > ξ2 or ξ2 > ξ1?



How to confound two pairs of strata from the two phases

tmt efficiency factor Phase I variance Phase II variance
p η1(> η2) ξ1
q η2 ξ2

Theorem
Smaller variance is obtained if the Phase II strata are labelled so that

ξ1 > ξ2 if
q
p

>
(rη2 +ξ1)(rη2 +ξ2)
(rη1 +ξ1)(rη1 +ξ2)

;

in particular, if
q
p

> 1;

ξ1 < ξ2 if
q
p

<
(rη2 +ξ1)(rη2 +ξ2)
(rη1 +ξ1)(rη1 +ξ2)

.
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Some treatment factors may be applied only in Phase II

Principle

Plan the whole experiment in advance,
especially if you want to estimate interactions
between the Phase I treatments and the Phase II treatments.
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I Confounding People with Batches increases the variance for
some Storage factors.

I Making People orthogonal to Batches uses up more degrees of
freedom.

I The compromise has a single df for
People ∨ Batches, with a variance
which is large and different from all
other variances (Cheng; Vivacqua).
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Conclusions: I

When designing a two-phase experiment
(or a multi-stage batch reprocessing experiment)

I design the whole thing in advance;
I pay attention to making variance small;
I pay attention to residual degrees of freedom;
I if treatments are orthogonal to ‘large blocks’ in Phase I,

then those large blocks should be confounded with
“large blocks” in Phase II;

I if a treatment term is in a Phase I stratum with large variance
(in particular, if a treatment factor is ‘hard to set’ in Phase I),
then it should be allocated to a Phase II stratum with small
variance.

I if a treatment term is partially confounded with more than one
Phase I stratum, and cannot be wholly allocated to a ‘small
variance’ stratum in Phase II, then the best design depends on the
ratios of the stratum variances and on the efficiency factors from
Phase I.



Conclusions: II

When designing a two-phase experiment
(or a multi-stage batch reprocessing experiment),
the following are useful concepts and tools.

I diagrams with panels to show tiers;
I Hasse diagrams to elucidate strata and degrees of freedom;
I the design key method of construction,

which can also be used to elucidate the confounding;
I decomposition tables (skeleton anova)

to assess the qualities of the design.


