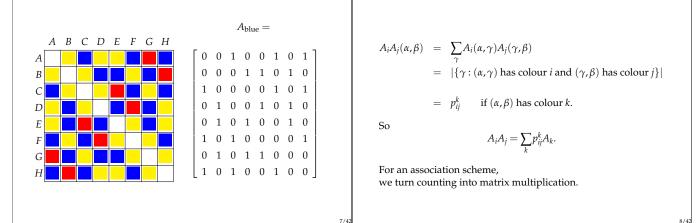
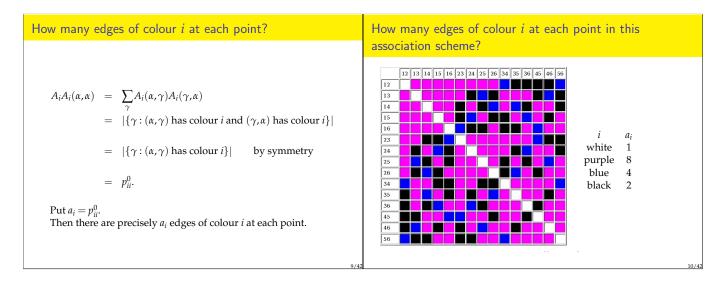
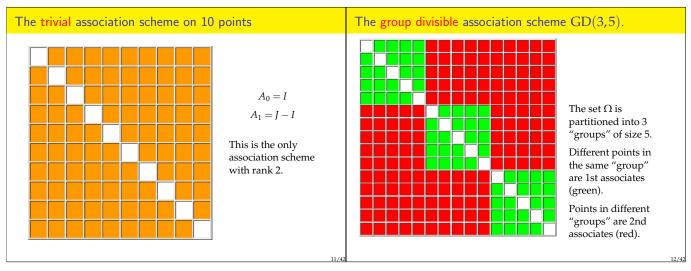


One adjacency matrix for the cube

That hard condition







Association schemes in design of experiments

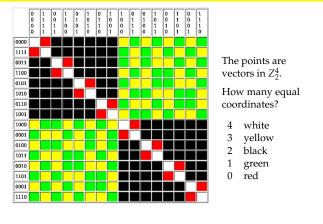
The Hamming association scheme Hamm(4, 2).

Suppose that we are going to do an experiment to compare 5 varieties of wheat.

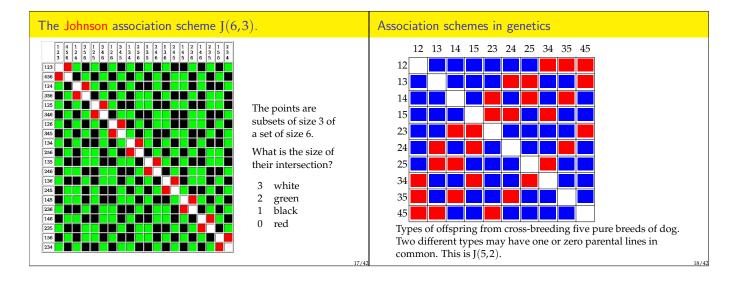
We can use 15 plots of land in a single field.

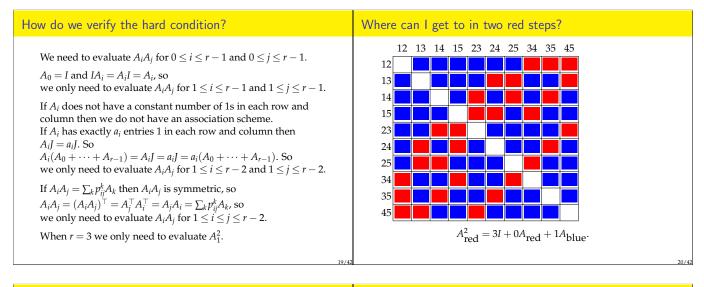
If the plots are all alike, they form the trivial association scheme on 15 plots.

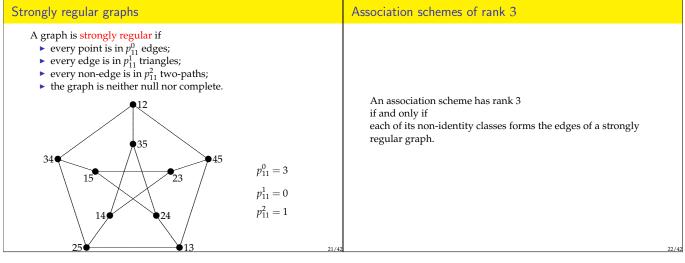
If the plots are not all alike, we may have to group them into three blocks: one block has the five plots near to the trees; another block has the five stony plots; and the third block has the five plots near to the stream. Now we have the group divisible association scheme GD(3,5).

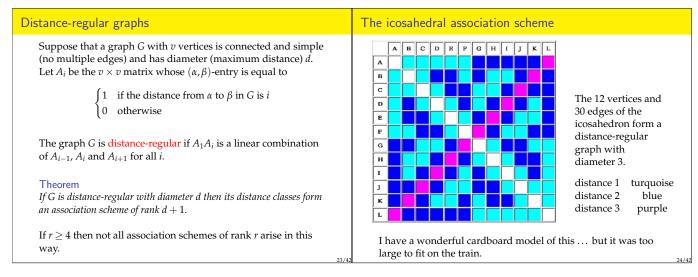


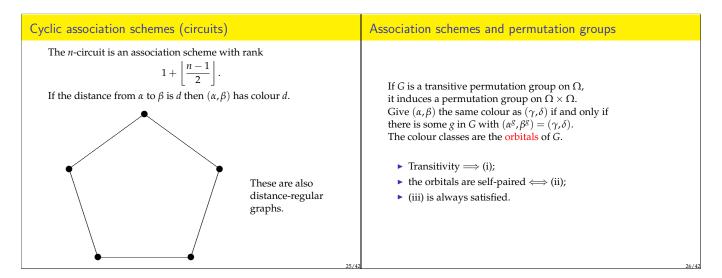
100 101 1
edge (distance 1)yellow2 equal coordinatesdistance 2blue1 equal coordinateCoded versions of possible messages should haveopposite (distance 3)red0 equal coordinateslarge Hamming distance between them.





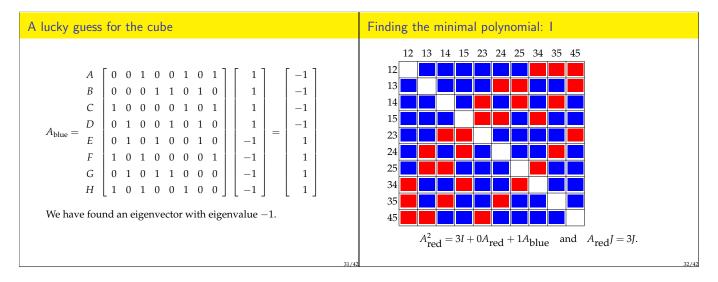






The Bose–Mesner algebra	Real symmetric matrices
 (i) A₀ = I (identity matrix); (ii) every A_i is symmetric; (iii) A_iA_j = ∑_k pⁱ_kA_k; (iv) ∑_iA_i = J (all-1s matrix). Let A be the set of all real linear combinations of the A_i. This is a real vector space. The matrices A₀,, A_{r-1} are linearly independent (in position (α, β), only one of the A-matrices is non-zero), so one basis for A is {A₀, A₁,, A_{r-1}}, and the dimension of A is equal to the rank of the association scheme. Condition (iii) shows that A is closed under multiplication, so it is an algebra. 	 Theorem If A is an n × n real symmetric matrix then the following hold. (i) All eigenvalues of A are real. (ii) If the distinct eigenvalues of A are λ₁,, λ_s, then the minimal polynomial of A is (X - λ₁)(X - λ₂)(X - λ_s). (iii) Eigenvectors of A corresponding to different eigenvalues are orthogonal to each other (w. r. t. the usual inner product). (iv) A is diagonalizable, which means that ℝⁿ has a basis consisting of eigenvectors of A, which means that ℝⁿ = W₁ ⊕ ⊕ W_s, where W_i is the eigenspace for eigenvalue λ_i. (v) Let Q_i be the matrix of orthogonal projection onto W_i (this means that Q_iv = v if v ∈ W_i and Q_iv = 0 if v ∈ W_i[⊥]). Then Q_i is a polynomial in A.

 Solve the equation det(A - xI) = 0 (Cambridge Maths students). Put it into Matlab (Lisbon Statistics students). If the matrix is patterned, guess an eigenvector and try it (RAB). Find the minimal polynomial.



Finding the minimal polynomial: II	Commuting projectors
$A_{\text{red}}^2 = 3I + 0A_{\text{red}} + 1A_{\text{blue}} \text{ and } A_{\text{red}}J = 3J.$ Put $A = A_{\text{red}}.$ $A^2 = 3I + (J - A - I) \text{ and } AJ = 3J.$	Theorem Let P be the matrix of orthogonal projection onto the subspace U, and let Q be the matrix of orthogonal projection onto the subspace V. If $PQ = QP$ then PQ is the matrix of orthogonal projection onto the subspace $U \cap V$.
$A^2 = 2I - A + J.$ $A^3 = 2A - A^2 + AJ = 2A - (2I - A + J) + 3J = -2I + 3A + 2J.$	Proof. $(PQ)^2 = PQPQ = P^2Q^2 = PQ$, so PQ is idempotent. Since PQ is also symmetric, it is the matrix of orthogonal projection onto its image. Call this W . $v \in W \Rightarrow PQv = v \Rightarrow P^2Qv = Pv \Rightarrow PQv = Pv \Rightarrow v = Pv \Rightarrow v \in U$.
$A^{3} - 2A^{2} - 5A + 6I = 0.$ The minimal polynomial is $X^{3} - 2X^{2} - 5X + 6 =$ $(X - 3)(X^{2} + X - 2) = (X - 3)(X - 1)(X + 2).$	$v \in W \Rightarrow PQv = v \Rightarrow P(Qv = Pv \Rightarrow PQv = Pv \Rightarrow v \in U.$ Similarly, $v \in W \Rightarrow v \in V$, so $W \subseteq U \cap V$. If $v \in U \cap V$ then $v = Pv = Qv$ so $PQv = Pv = v$ so $v \in W$. Therefore $U \cap V \subseteq W$, and so $U \cap V = W$.

Commuting symmetric matrices	Mutual eigenspaces of the Bose–Mesner algebra
 Theorem Let A and B be real symmetric n × n matrices. If AB = BA then there are mutually orthogonal subspaces W₁,, W_s such that 	The Bose–Mesner algebra \mathcal{A} consists of symmetric matrices, is commutative, and has dimension r , where r is the rank of the association scheme. So there are mutually orthogonal subspaces W_1, \ldots, W_s of \mathbb{R}^n such that if $M \in \mathcal{A}$ then each eigenspace of M is either one of the W_i or the direct sum of two or more of W_1, \ldots, W_s . Let P_j be the orthogonal projector onto W_j . Then P_j is a polynomial in $A_0, A_1, \ldots, A_{r-1}$, so $P_j \in \mathcal{A}$.
Proof. Let the eigenprojectors of <i>A</i> be $P_1,, P_m$ and the eigenprojectors of <i>B</i> be $Q_1,, Q_t$. The former are polynomials in <i>A</i> , and the latter are polynomials in <i>B</i> , so they commute. Apply the previous theorem to each nonzero product P_iQ_j . $I = I^2 = (P_1 + \dots + P_m)(Q_1 + \dots + Q_t) = \sum_i \sum_j P_iQ_j$, so $\bigoplus_k W_k$ is the whole space.	P_1, \ldots, P_s are linearly dependent because $P_j P_k = 0$ if $j \neq k$. Let c_{ij} be the eigenvalue of A_i on W_j . Then $A_i = \sum_{j=1}^{s} c_{ij} P_j$ for $i = 0, \ldots, r - 1$. Hence $\{P_1, \ldots, P_s\}$ is another basis for A , and so $s = r$.

Strata

The subspaces W_1, \ldots, W_r are called strata.

The projectors P_j are sometimes called minimal idempotents.

The dimension $d_j = \dim(W_j)$ is sometimes called the (number of) degrees of freedom for W_j .

The 1-dimensional space spanned by the all-1 vector is always a stratum.

The character table

We have seen that if c_{ij} is the eigenvalue of A_i on W_j then

$$A_i = \sum_{j=1}^r c_{ij} P_j$$
 for $i = 0, ..., r - 1$

Let *C* be the $r \times r$ matrix with entries c_{ij} . The columns of *C* are called the characters of the association scheme, and *C* is called the character table of the association scheme.

(The conventions are slightly different from those in group theory.)

To express P_i as a linear combination of the A_i , we need C^{-1} .

Two bases	Possible generalizations
$ \{A_0, \dots, A_{r-1}\} \text{ and } \{P_1, \dots, P_r\} \text{ are both bases for } \mathcal{A}. \\ \{A_0, \dots, A_{r-1}\} \text{ is more useful for interpretation, and is easier for doing addition.} \\ \{P_1, \dots, P_r\} \text{ is easier for doing multiplication, including finding inverses (and generalized inverses).} \\ \text{To transfer back and forth between the two bases, we need to know both C and C^{-1}. \\ \text{Theorem} \\ C^{-1} = \frac{1}{ \Omega } \operatorname{diag}(d_1, \dots, d_r) C^\top \operatorname{diag}\left(\frac{1}{a_0}, \dots, \frac{1}{a_{r-1}}\right). \\ \text{In general, there is no easy way of finding C,} $	 Allow A_i and A_i[⊤] to be two different colours, but still insist on commutativity (P. Delsarte, coding theory, 1973, thesis) Allow A_i and A_i[⊤] to be two different colours, but do not insist on commutativity (natural approach for permutation groups, I. Schur, 1933; H. Wielandt, 1964; D. G. Higman, 1964, 1967) (now called homogeneous coherent configurations) Allow the diagonal to be more than one class, which forces the loss of commutativity and symmetry (called coherent configurations by D. G. Higman).
and no natural labelling for the strata.	40/43

Some history: I

- Relevant idea for permutation groups (I. Schur, 1933).
- Definition of association scheme, in design of experiments (R. C. Bose and K. R. Nair, 1939).
- A strongly regular graph on 100 points with valency 22 (D. M. Mesner, 1956, thesis).
- ▶ Bose–Mesner algebra (Bose and Mesner, 1959).
- Multidimensional association schemes (J. N. Srivastava, 1961, thesis; Bose and Srivastava, 1964; much more by Srivastava over the years).
- Effectively homogeneous coherent configurations, but unnamed (C. R. Nair, 1964)
- A strongly regular graph on 100 points with valency 22 and large automorphism group (D. G. Higman and C. C. Sims, 1968).
- Cellular algebras (B. Yu. Weisfeiler and A. A. Lehman, 1968, possibly earlier in Russian?; much more by others in the U.S.S.R. over the years).

Some history: II

- Coherent configurations (Higman, 1975, 1976, after ten years of lecturing on them).
- Breakdown of barriers with U.S.S.R., and realisation that cellular algebras are the same as coherent configurations (1990).
- Death of Mesner, and realisation that he had pre-discovered the Higman–Sims graph (2002).
- ► Death of Higman (13/2/2006).
- Death of Srivastava (18/11/2010).
- ▶ Realisation that multidimensional association schemes are the same as coherent configurations (2011).

42/42