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Association schemes: definition

An association scheme of rank r
on a finite set Ω (sometimes called points)
is a colouring of the elements of Ω×Ω
(sometimes called edges)
by r colours such that
(i) one colour is exactly the main diagonal;
(ii) each colour is symmetric about the main diagonal;
(iii) if (α, β) is yellow

then there are exactly pyellow
red,blue points γ

such that (α,γ) is red and (γ, β) is blue
(for all values of yellow, red and blue).

The non-diagonal classes are called associate classes.
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An association scheme with 15 points and 3 associate
classes

If (α, β) is blue
α β

white blue 1
blue white 1
blue blue 1
black pink 4
pink black 4
pink pink 4
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An association scheme defined by a Latin square

1 2 3 4
1 A B C D
2 B C D A
3 C D A B
4 D A B C

different cells in same row red
different cells in same column green
different cells in same letter yellow
other different cells black 4/42

The association scheme defined by the cube
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edge (distance 1) yellow
distance 2 blue
opposite (distance 3) red
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Association schemes: alternative definition

The adjacency matrix Ai for colour i is the Ω×Ω matrix with

Ai(α, β) =

{
1 if (α, β) has colour i
0 otherwise.

Colour 0 is the diagonal, so
(i) A0 = I (identity matrix);
(ii) every Ai is symmetric;
(iii) AiAj = ∑

k
pk

ijAk;

(iv) ∑
i

Ai = J (all-1s matrix).
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One adjacency matrix for the cube

Ablue =

A B C D E F G H
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0 0 1 0 0 1 0 1

0 0 0 1 1 0 1 0

1 0 0 0 0 1 0 1

0 1 0 0 1 0 1 0

0 1 0 1 0 0 1 0

1 0 1 0 0 0 0 1

0 1 0 1 1 0 0 0

1 0 1 0 0 1 0 0
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That hard condition

AiAj(α, β) = ∑
γ

Ai(α,γ)Aj(γ, β)

= |{γ : (α,γ) has colour i and (γ, β) has colour j}|

= pk
ij if (α, β) has colour k.

So
AiAj = ∑

k
pk

ijAk.

For an association scheme,
we turn counting into matrix multiplication.
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How many edges of colour i at each point?

AiAi(α,α) = ∑
γ

Ai(α,γ)Ai(γ,α)

= |{γ : (α,γ) has colour i and (γ,α) has colour i}|

= |{γ : (α,γ) has colour i}| by symmetry

= p0
ii.

Put ai = p0
ii.

Then there are precisely ai edges of colour i at each point.
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How many edges of colour i at each point in this
association scheme?

i ai
white 1
purple 8

blue 4
black 2
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The trivial association scheme on 10 points

A0 = I

A1 = J− I

This is the only
association scheme
with rank 2.
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The group divisible association scheme GD(3,5).

The set Ω is
partitioned into 3
“groups” of size 5.

Different points in
the same “group”
are 1st associates
(green).

Points in different
“groups” are 2nd
associates (red).
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Association schemes in design of experiments

Suppose that we are going to do an experiment to compare
5 varieties of wheat.
We can use 15 plots of land in a single field.

If the plots are all alike, they form the trivial association scheme
on 15 plots.

If the plots are not all alike, we may have to group them into
three blocks: one block has the five plots near to the trees;
another block has the five stony plots; and the third block has
the five plots near to the stream. Now we have the group
divisible association scheme GD(3,5).
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The Hamming association scheme Hamm(4,2).

The points are
vectors in Z4

2.

How many equal
coordinates?

4 white
3 yellow
2 black
1 green
0 red

14/42

The cube association scheme is Hamm(3,2)

�
�
�
�

�
�
�
�

@
@
@

@

@
@
@

@

000 001

011010

100 101

111110

000 001 011 010 100 101 111 110

000

001

011

010

100

101

111

110

edge (distance 1) yellow 2 equal coordinates
distance 2 blue 1 equal coordinate
opposite (distance 3) red 0 equal coordinates
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Association schemes in coding theory

You receive the following top-secret message:

SHOOT BORDS

Should you

SHOOT BORIS?

SHOOT BIRDS?

SHOOT LORDS?

SHOOT BONDS?

Coded versions of possible messages should have
large Hamming distance between them.
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The Johnson association scheme J(6,3).

The points are
subsets of size 3 of
a set of size 6.

What is the size of
their intersection?

3 white
2 green
1 black
0 red
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Association schemes in genetics

12 13 14 15 23 24 25 34 35 45
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Types of offspring from cross-breeding five pure breeds of dog.
Two different types may have one or zero parental lines in
common. This is J(5,2).
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How do we verify the hard condition?

We need to evaluate AiAj for 0≤ i≤ r− 1 and 0≤ j≤ r− 1.

A0 = I and IAi = AiI = Ai, so
we only need to evaluate AiAj for 1≤ i≤ r− 1 and 1≤ j≤ r− 1.

If Ai does not have a constant number of 1s in each row and
column then we do not have an association scheme.
If Ai has exactly ai entries 1 in each row and column then
AiJ = aiJ. So
Ai(A0 + · · ·+ Ar−1) = AiJ = aiJ = ai(A0 + · · ·+ Ar−1). So
we only need to evaluate AiAj for 1≤ i≤ r− 2 and 1≤ j≤ r− 2.

If AiAj = ∑k pk
ijAk then AiAj is symmetric, so

AiAj = (AiAj)
> = A>j A>i = AjAi = ∑k pk

ijAk, so
we only need to evaluate AiAj for 1≤ i≤ j≤ r− 2.

When r = 3 we only need to evaluate A2
1.
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Where can I get to in two red steps?

12 13 14 15 23 24 25 34 35 45
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A2
red = 3I + 0Ared + 1Ablue.
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Strongly regular graphs

A graph is strongly regular if
I every point is in p0

11 edges;
I every edge is in p1

11 triangles;
I every non-edge is in p2

11 two-paths;
I the graph is neither null nor complete.
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Association schemes of rank 3

An association scheme has rank 3
if and only if
each of its non-identity classes forms the edges of a strongly
regular graph.
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Distance-regular graphs

Suppose that a graph G with v vertices is connected and simple
(no multiple edges) and has diameter (maximum distance) d.
Let Ai be the v× v matrix whose (α, β)-entry is equal to

{
1 if the distance from α to β in G is i
0 otherwise

The graph G is distance-regular if A1Ai is a linear combination
of Ai−1, Ai and Ai+1 for all i.

Theorem
If G is distance-regular with diameter d then its distance classes form
an association scheme of rank d + 1.

If r≥ 4 then not all association schemes of rank r arise in this
way.
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The icosahedral association scheme

The 12 vertices and
30 edges of the
icosahedron form a
distance-regular
graph with
diameter 3.

distance 1 turquoise
distance 2 blue
distance 3 purple

I have a wonderful cardboard model of this . . . but it was too
large to fit on the train.
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Cyclic association schemes (circuits)

The n-circuit is an association scheme with rank

1 +
⌊

n− 1
2

⌋
.

If the distance from α to β is d then (α, β) has colour d.
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These are also
distance-regular
graphs.
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Association schemes and permutation groups

If G is a transitive permutation group on Ω,
it induces a permutation group on Ω×Ω.
Give (α, β) the same colour as (γ,δ) if and only if
there is some g in G with (αg, βg) = (γ,δ).
The colour classes are the orbitals of G.

I Transitivity =⇒ (i);
I the orbitals are self-paired⇐⇒ (ii);
I (iii) is always satisfied.
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The Bose–Mesner algebra

(i) A0 = I (identity matrix);
(ii) every Ai is symmetric;
(iii) AiAj = ∑

k
pk

ijAk;

(iv) ∑
i

Ai = J (all-1s matrix).

Let A be the set of all real linear combinations of the Ai.

This is a real vector space.
The matrices A0, . . . , Ar−1 are linearly independent
(in position (α, β), only one of the A-matrices is non-zero),
so one basis for A is {A0,A1, . . . ,Ar−1}, and the dimension of A
is equal to the rank of the association scheme.

Condition (iii) shows that A is closed under multiplication, so
it is an algebra.

AiAj = AjAi for all i and j, so A is a commutative algebra.
27/42

Real symmetric matrices

Theorem
If A is an n× n real symmetric matrix then the following hold.
(i) All eigenvalues of A are real.
(ii) If the distinct eigenvalues of A are λ1, . . . , λs, then the

minimal polynomial of A is (X− λ1)(X− λ2) · · · (X− λs).
(iii) Eigenvectors of A corresponding to different eigenvalues are

orthogonal to each other (w. r. t. the usual inner product).
(iv) A is diagonalizable,

which means that Rn has a basis consisting of eigenvectors of A,
which means that Rn = W1 ⊕ · · · ⊕Ws,
where Wi is the eigenspace for eigenvalue λi.

(v) Let Qi be the matrix of orthogonal projection onto Wi
(this means that Qiv = v if v ∈Wi and Qiv = 0 if v ∈W⊥i ).
Then Qi is a polynomial in A.
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How do you find the eigenvalues of a real symmetric
matrix A?

I Solve the equation det(A− xI) = 0
(Cambridge Maths students).

I Put it into Matlab
(Lisbon Statistics students).

I If the matrix is patterned, guess an eigenvector and try it
(RAB).

I Find the minimal polynomial.
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The easy fruit

If u is the all-1 vector then Aiu = aiu
(because Ai has ai non-zero entries in each row and column).

So u is an eigenvector of all matrices in A, so we can confine the
rest of our search to vectors which are orthogonal to u.
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A lucky guess for the cube
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0 0 1 0 0 1 0 1

0 0 0 1 1 0 1 0

1 0 0 0 0 1 0 1

0 1 0 0 1 0 1 0

0 1 0 1 0 0 1 0

1 0 1 0 0 0 0 1

0 1 0 1 1 0 0 0
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We have found an eigenvector with eigenvalue −1.
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Finding the minimal polynomial: I

12 13 14 15 23 24 25 34 35 45
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A2
red = 3I + 0Ared + 1Ablue and AredJ = 3J.
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Finding the minimal polynomial: II

A2
red = 3I + 0Ared + 1Ablue and AredJ = 3J.

Put A = Ared.

A2 = 3I + (J−A− I) and AJ = 3J.

A2 = 2I−A + J.

A3 = 2A−A2 + AJ = 2A− (2I−A + J) + 3J = −2I + 3A + 2J.

A3 − 2A2 − 5A + 6I = 0.

The minimal polynomial is X3 − 2X2 − 5X + 6 =
(X− 3)(X2 + X− 2) = (X− 3)(X− 1)(X + 2).
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Commuting projectors

Theorem
Let P be the matrix of orthogonal projection onto the subspace U, and
let Q be the matrix of orthogonal projection onto the subspace V.
If PQ = QP then PQ is the matrix of orthogonal projection onto the
subspace U ∩V.

Proof.
(PQ)2 = PQPQ = P2Q2 = PQ, so PQ is idempotent. Since PQ is
also symmetric, it is the matrix of orthogonal projection onto its
image. Call this W.

v ∈W⇒ PQv = v⇒ P2Qv = Pv⇒ PQv = Pv⇒ v = Pv⇒ v ∈U.

Similarly, v ∈W⇒ v ∈ V, so W ⊆ U ∩V.

If v ∈ U ∩V then v = Pv = Qv so PQv = Pv = v so v ∈W.

Therefore U ∩V ⊆W, and so U ∩V = W.
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Commuting symmetric matrices

Theorem
Let A and B be real symmetric n× n matrices. If AB = BA then there
are mutually orthogonal subspaces W1, . . . , Ws such that

I Rn = W1 ⊕ · · · ⊕Ws;
I each Wi is contained in an eigenspace of A and an eigenspace

of B;
I the matrix of orthogonal projection onto each subspace is a

polynomial in A and B.

Proof.
Let the eigenprojectors of A be P1, . . . , Pm and the
eigenprojectors of B be Q1, . . . , Qt. The former are polynomials
in A, and the latter are polynomials in B, so they commute.
Apply the previous theorem to each nonzero product PiQj.
I = I2 = (P1 + · · ·+ Pm)(Q1 + · · ·+ Qt) = ∑i ∑j PiQj,
so
⊕

k Wk is the whole space.
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Mutual eigenspaces of the Bose–Mesner algebra

The Bose–Mesner algebra A consists of symmetric matrices,
is commutative, and has dimension r, where r is the rank of the
association scheme.
So there are mutually orthogonal subspaces W1, . . . , Ws of Rn

such that if M ∈ A then each eigenspace of M is either one of
the Wi or the direct sum of two or more of W1, . . . , Ws.

Let Pj be the orthogonal projector onto Wj.
Then Pj is a polynomial in A0, A1, . . . , Ar−1, so Pj ∈ A.

P1, . . . , Ps are linearly dependent because PjPk = 0 if j 6= k.

Let cij be the eigenvalue of Ai on Wj. Then

Ai =
s

∑
j=1

cijPj for i = 0, . . . , r− 1.

Hence {P1, . . . ,Ps} is another basis for A, and so s = r.
36/42



Strata

The subspaces W1, . . . , Wr are called strata.

The projectors Pj are sometimes called minimal idempotents.

The dimension dj = dim(Wj) is sometimes called
the (number of) degrees of freedom for Wj.

The 1-dimensional space spanned by the all-1 vector is always
a stratum.
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The character table

We have seen that if cij is the eigenvalue of Ai on Wj then

Ai =
r

∑
j=1

cijPj for i = 0, . . . , r− 1.

Let C be the r× r matrix with entries cij. The columns of C are
called the characters of the association scheme, and C is called
the character table of the association scheme.

(The conventions are slightly different from those in group
theory.)

To express Pj as a linear combination of the Ai, we need C−1.
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Two bases

{A0, . . . ,Ar−1} and {P1, . . . ,Pr} are both bases for A.
{A0, . . . ,Ar−1} is more useful for interpretation, and is easier for
doing addition.
{P1, . . . ,Pr} is easier for doing multiplication, including finding
inverses (and generalized inverses).

To transfer back and forth between the two bases, we need to
know both C and C−1.

Theorem

C−1 =
1
|Ω| diag(d1, . . . ,dr)C>diag

(
1
a0

, . . . ,
1

ar−1

)
.

In general, there is no easy way of finding C,
and no natural labelling for the strata.
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Possible generalizations

I Allow Ai and A>i to be two different colours,
but still insist on commutativity
(P. Delsarte, coding theory, 1973, thesis)

I Allow Ai and A>i to be two different colours,
but do not insist on commutativity
(natural approach for permutation groups,
I. Schur, 1933; H. Wielandt, 1964; D. G. Higman, 1964, 1967)
(now called homogeneous coherent configurations)

I Allow the diagonal to be more than one class,
which forces the loss of commutativity and symmetry
(called coherent configurations by D. G. Higman).
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Some history: I

I Relevant idea for permutation groups (I. Schur, 1933).
I Definition of association scheme, in design of experiments

(R. C. Bose and K. R. Nair, 1939).
I A strongly regular graph on 100 points with valency 22

(D. M. Mesner, 1956, thesis).
I Bose–Mesner algebra (Bose and Mesner, 1959).
I Multidimensional association schemes (J. N. Srivastava,

1961, thesis; Bose and Srivastava, 1964; much more by
Srivastava over the years).

I Effectively homogeneous coherent configurations, but
unnamed (C. R. Nair, 1964)

I A strongly regular graph on 100 points with valency 22
and large automorphism group (D. G. Higman and
C. C. Sims, 1968).

I Cellular algebras (B. Yu. Weisfeiler and A. A. Lehman,
1968, possibly earlier in Russian?; much more by others in
the U.S.S.R. over the years).
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Some history: II

I Coherent configurations (Higman, 1975, 1976, after ten
years of lecturing on them).

I Breakdown of barriers with U.S.S.R., and realisation that
cellular algebras are the same as coherent configurations
(1990).

I Death of Mesner, and realisation that he had
pre-discovered the Higman–Sims graph (2002).

I Death of Higman (13/2/2006).
I Death of Srivastava (18/11/2010).
I Realisation that multidimensional association schemes are

the same as coherent configurations (2011).
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