Conflicts between optimality criteria for block designs with low replication

International Biometric Congress, Florianopolis, 2010

Ongoing joint work with Alia Sajjad and Peter Cameron

I have *v* treatments that I want to compare. I have *b* blocks, with space for *k* treatments (not necessarily distinct) in each block. How should I choose a block design?

1	1	2	3	4	5	6
2	4	5	6	10	11	12
3	7	8	9	13	14	15

1	1	1	1	1	1	1
2	4	6	8	10	12	14
3	5	7	9	11	13	15

replications differ by ≤ 1

queen-bee design

The replication of a treatment is its number of occurrences.

A design is a queen-bee design if there is a treatment that occurs in every block.

1	2	3	4	5	6	7	1	2	3	4	5	6	7
2	3	4	5	6	7	1	2	3	4	5	6	7	1
4	5	6	7	1	2	3	3	4	5	6	7	1	2

balanced (2-design)

non-balanced

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

A binary design is balanced if every pair of distinct treaments occurs together in the same number of blocks.

Concurrence graphs of two designs: v = 15, b = 7, k = 3

1	1	2	3	4	5	6
2	4	5	6	10	11	12
3	7	8	9	13	14	15

1	1	1	1	1	1	1
2	4	6	8	10	12	14
3	5	7	9	11	13	15

・ロト・西ト・モン・ 団・ うんの

We measure the response *Y* on each unit in each block.

If that unit has treatment i and block m, then we assume that

 $Y = \tau_i + \beta_m + \text{random noise.}$

We want to estimate contrasts $\sum_i x_i \tau_i$ with $\sum_i x_i = 0$.

In particular, we want to estimate all the simple differences $\tau_i - \tau_j$.

Put V_{ij} = variance of the best linear unbiased estimator for $\tau_i - \tau_j$. We want all the V_{ij} to be small.

・ロト・日本・日本・日本・日本・日本

The design is called

 A-optimal if it minimizes the average of the pairwise variances V_{ij};

over all block designs for *v* treatments in *b* blocks of size *k*.

The design is called

- A-optimal if it minimizes the average of the pairwise variances V_{ij};
- D-optimal if it minimizes the volume of the confidence ellipsoid for (τ₁,..., τ_ν), subject to Στ_i = 0;

over all block designs for v treatments in b blocks of size k.

Theorem

If there is a balanced incomplete-block design (BIBD) for v treatments in b blocks of size k, then it is A, D and E-optimal.

Theorem

If there is a balanced incomplete-block design (BIBD) for v treatments in b blocks of size k, then it is A, D and E-optimal.

Hence a general idea that

- designs optimal on any of these criteria should be close to balanced and close to equi-replicate
- designs optimal on one of these criteria are not very bad on either of the others.

Block size 2: least replication

If k = 2 then the design is the same as its concurrence graph, and connectivity requires $b \ge v - 1$.

If b = v - 1 then all connected designs are trees.

Block size 2: least replication

If k = 2 then the design is the same as its concurrence graph, and connectivity requires $b \ge v - 1$.

If b = v - 1 then all connected designs are trees.

The D-criterion does not differentiate them.

Block size 2: least replication

If k = 2 then the design is the same as its concurrence graph, and connectivity requires $b \ge v - 1$.

If b = v - 1 then all connected designs are trees.

The D-criterion does not differentiate them.

The only A-optimal designs are the stars.

If k = 2 and b = v then the design consists of a cycle with trees attached to some vertices.

If k = 2 and b = v then the design consists of a cycle with trees attached to some vertices.

The cycle is uniquely D-optimal when b = v.

D-optimal designs cycle always A-optimal designs cycle if $v \le 8$ square with leaves attached if $9 \le v \le 12$ triangle with leaves attached if $12 \le v$

D-optimal designs	cycle	always
A-optimal designs	cycle square with leaves attached	$if v \le 8$ $if 9 \le v \le 12$
	triangle with leaves attached	if $12 \le v$

For $v \ge 9$, the ranking on the D-criterion is essentially the opposite of the rankings on the A-criterion

D-optimal designs	cycle	always
A-optimal designs	cycle square with leaves attached	if $v \le 8$ if $9 < v < 12$
	triangle with leaves attached	if $12 \le v$

For $v \ge 9$, the ranking on the D-criterion is essentially the opposite of the rankings on the A-criterion and the A-optimal designs are far from equi-replicate.

D-optimal designs	cycle	always
A-optimal designs	cycle	if $v \le 8$ if $9 \le v \le 12$
	triangle with leaves attached	$if 12 \le v \le 12$

For $v \ge 9$, the ranking on the D-criterion is essentially the opposite of the rankings on the A-criterion and the A-optimal designs are far from equi-replicate. The change is sudden, not gradual.

The remaining arguments extend easily to general block size.

The remaining arguments extend easily to general block size.

When k = 3, for a connected design, we need $2b \ge v - 1$.

The remaining arguments extend easily to general block size.

When k = 3, for a connected design, we need $2b \ge v - 1$.

If 2b + 1 = v then all designs are gum-trees, in the sense that there is a unique sequence of blocks from any one treatment to another.

・ロ・・聞・・叫・・

The D-criterion does not differentiate them.

The D-criterion does not differentiate them.

The only A-optimal designs are the queen-bee designs.

Block size 3, but b = minimal + 1

If 2b = v then *G* is a gum-cycle with gum-trees attached.

Block size 3, but b = minimal + 1: D

Suppose that there are *s* blocks in the gum-cycle.

Block size 3, but b = minimal + 1: D

Suppose that there are *s* blocks in the gum-cycle.

The design is D-optimal if and only if s = b.

This argument extends to all block sizes.

If v = b(k-1) then the only D-optimal designs are the gum-cycles.

Block size 3, but b = minimal + 1: A

Suppose that there are *s* blocks in the gum-cycle.

Block size 3, but b = minimal + 1: A

Suppose that there are *s* blocks in the gum-cycle. Then the only candidate for A-optimality consists of b - s triangles attached to a central vertex of the gum-cycle.

Block size 3, but b = minimal + 1: A

Suppose that there are *s* blocks in the gum-cycle. Then the only candidate for A-optimality consists of b - s triangles attached to a central vertex of the gum-cycle.

A-optimal designs do not have *s* large.

This argument extends to all block sizes.

If v = b(k-1) then the only A-optimal designs consist of a gum-cycle of s_0 blocks together with $b - s_0$ blocks attached to a central vertex of the gum-cycle.

The value of s_0 depends on b and k, but it is never large.