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The problem

An agricultural experiment to compare n treatments.
The experimental area has r rows and n columns.

n

Use a randomized complete-block design with rows as blocks.
(In each row, choose one of the n! orders with equal probability.)

What should we do if the randomization produces a plan with one
treatment always at one side of the rectangle?
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Federer (1955 book): guayule trees

B|D|G|A|F|C|E

A|G|C|D|F|B|E

G|E | D|F|B|C|A

B|A|C|F|G|E|D

G|B|F|C|D|A|FE




Example

Federer (1955 book): guayule trees

E

B|D | G|A|F|C|E

A|G|C|D|F|B|E

G|E | D|F|B|C|A

B|A|C|F|G|E|D

G|B|F|C|D|A




Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual



Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization
Keep re-randomizing until you get a plan you like. Analyse as usual.



Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization
Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more
than once in any column.



Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization
Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Use a Latinized design, but analyse as usual
Deliberately construct a design in which no treatment occurs more
than once in any column.

Solution (following Yates): Super-valid restricted
randomization, with usual analysis



Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization
Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Use a Latinized design, but analyse as usual
Deliberately construct a design in which no treatment occurs more
than once in any column.

Solution (following Yates): Super-valid restricted
randomization, with usual analysis

Solution: Efficient row-column design, with analysis allowing
for rows and columns



Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization
Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more
than once in any column.

Solution (following Yates): Super-valid restricted
randomization, with usual analysis

Solution: Efficient row-column design, with analysis allowing
for rows and columns

Solution: Use a carefully chosen Latinized design;
REML/ANOVA estimates of variance components



Assumed model

Y, is the response on plot a.

E(Yy) =6; where i is the treatment on Q.

Var(Yy) = o for all o

po’

Cov(Yq,Yg) = < to? if a# P insame column
0 if & # B otherwise

if & # B in same row

with0<p<land0 <7<,



Concurrence

Ajj = number of pairs of plots in the same column getting treatments i
and j.
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Concurrence

Ajj = number of pairs of plots in the same column getting treatments i
and j.
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Pairwise variance
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Pairwise variance

Var(Yy) = o2 for all o
po? if o # B in same row
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Pairwise variance in the example
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Pairwise variance in the example
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Pairwise variance in the example
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Calculations

Put Z Z Vi andput D= Z Aji.
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Calculations

i andput D= ZA,,

i=1j#i

20?2 D—r?
Calculations give V = % [r(l —-p)+ ( rl — r> T}
r n—

. 2M
The estimator of Vis V =—, where M = MS residual.
r

2M
Calculations show that E () = [62(1 -p)— 2] ,
-

so smaller V = larger V.
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Continue to randomize and analyse as usual

» Simple to construct.
» Simple to randomize.
» Simple to analyse.

» Some treatment comparisons in some experiments will have a
specially low or specially high variance,
but the estimated variance is unbiased
when averaged over all comparisons and
all possible randomized plans.
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For the 5 x 7 rectangle, the proportion of plans with no repeat in
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Simple restricted randomization

Keep re-randomizing until you get a plan you like. Analyse as usual.

» Inefficient to produce plans: many will have to be rejected.
For the 5 x 7 rectangle, the proportion of plans with no repeat in
any column is only 0.000006.

» The actual variance of treatment comparisons is lower,
but the estimate of that variance is higher.

V=2l - 0]

and

n—1

B =22 2 p)s T ]

» Genuine treatment differences may not be detected.
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Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more
than once in any column.
Easy to do this directly, eg

ODiwm|Q|a|l>
M| >»> |0 | ™

S ERCEE-R NN N
QIm|Ia|l™m|T
> | T Q|
o Q&>
A>T |=|Q

Randomize rows, columns, treatments.

Same bias in estimator of variance as for simple restricted
randomization.
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Super-valid restricted randomization

» Needs tables of designs.
» Randomize rows, columns and treatments.
» Analyse as usual.

» Same average variance as in randomized complete-block design,
but with smaller range.

» The estimator of variance is unbiased
when averaged over all comparisons in this one experiment.

» There is no separate estimate of p or 7,
so treatments must be randomized
and a single standard error given for all differences.



A design from the tables
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A design from the tables

QT[> |T | >
M % | Q|| W
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W || AT
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1. In every pair of rows, there is exactly one column in which the
two treatments are the same.

2. No treatment occurs more than twice in any column.

3. If m; = the number of columns in which treatment i occurs
twice, then m; —m; € {—1,0,1} for all other treatments ;.

4. Subject to conditions (1)—(3), the spread of the variances of the
estimators of simple treatment differences is as small as possible.



Pairwise variances in the design from the tables
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Pairwise variances in the design from the tables
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Efficient row-column designs

» Needs tables of designs.
» Randomize rows and columns.

» More complicated analysis
(should be available in software).

» Average variance may be less than, or more than,
the average variance in randomized complete-block design,
depending on the size of the correlations.

» Unbiased estimator of the variance of every treatment contrast.

» There is no need to randomize treatments; the most important
differences can be given the lowest variance.
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Columns form an Incomplete-block design (IBD)

Given an incomplete-block design for
n treatments in n blocks of size r,
define the number A (0 < A < 1), depending on the design, by

2 2
A==
rv
if the analysis uses information orthogonal to blocks.
Choose the optimal IBD: the one with the largest value of A.

Hall’s Marriage Theorem = the blocks of this IBD can be arranged
as the columns of a row-column design so that each treatment occurs
once in each row.

Randomize rows and columns.
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Example of a row-column design

Vas

Vac

Vab

Do |a|w|>
mE DO W
Q™| = |T|Aa
> Q| ™| |
o> Q™|

QA= |> Q™

i@ | > |Q

2
1044 x (1= p —1)0?
2 2
1.089 x 5(1 —p—1)0
1.091 x %(1 —p—1)0?

2
1.075 x g(l —p—1)0°>

normal method
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Comparing super-valid restricted randomization and

efficient row-column designs

covariance matrix —+ve definite

— p+1<1 17

rows more variable than columns
= np>rt

V in RCD < V for SVRR 1-A
= (1-4)(1-p)<7

p Possible values of p and 7

RCD

SVRR
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Use a carefully chosen Latinized design with
REML/ANOVA estimates of variance components

Choose a design with the column concurrences as equal as possible.
Randomize rows and columns.

T
E(MS residual from complete-block analysis) = ¢ {(1 —-p)+ ] ]
n J—
E(MS residual from row-column analysis) = 6*(1 —p — 1)

Hence unbiased estimators of 6%(1 — p) and 67 and of

2 r—
VZZ% (1—p)—(n_ll)f].

But this estimator of V does not have a x? distribution,
so how do we do hypothesis tests?

Also, there are so few effective df for 7 that

these estimates have very poor precision.
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