Structure balance and ANOVA tables for experiments which are randomized in stages

joint work with C. J. Brien, University of South Australia

DAE, Memphis November 2007

4 treatments 4 Variations

120 runs

runs tier	
source	df
Mean	1
Machines	19
Times[Machines]	100

runs tier		
source	df	
Mean	1	
Machines	19	
Times[Machines]	100	

runs tier		treatment	s tier
source	df	source	df
Mean	1		
Machines	19		
Times[Machines]	100		

runs tier		treatment	s tier
source	df	source	df
Mean	1	Mean	1
Machines	19		
Times[Machines]	100		

runs tier		treatments	tier
source	df	source	df
Mean	1	Mean	1
Machines	19	Variations	3
Times[Machines]	100		

runs tier		treatments	tier
source	df	source	df
Mean	1	Mean	1
Machines	19	Variations	3
		Residual	16
Times[Machines]	100		

An experiment on an industrial process: skeleton anova

runs tier		treatments	tier
source	df	source	df
Mean	1	Mean	1
Machines	19	Variations	3
		Residual	16
Times[Machines]	100		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

An experiment on an industrial process: skeleton anova

runs tier		treatments	tier
source	df	source	df
Mean	1	Mean	1
Machines	19	Variations	3
		Residual	16
Times[Machines]	100		

The skeleton analysis of variance shows

which "block" term the Variations term is confounded with, hence the likely magnitude of the variance of the estimator of the contrast between any two variations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

An experiment on an industrial process: skeleton anova

runs tier		treatments	tier
source	df	source	df
Mean	1	Mean	1
Machines	19	Variations	3
		Residual	16
Times[Machines]	100		

The skeleton analysis of variance shows

- which "block" term the Variations term is confounded with, hence the likely magnitude of the variance of the estimator of the contrast between any two variations
- the relevant residual term, and its degrees of freedom, hence the likely precision of the estimator of that variance, and information about the power of a hypothesis test.

subplots tier		
source	df	
Mean	1	
Rows	4	
Columns	4	
Rows#Columns	16	
Subplots[R,C]	25	

▲□▶★@▶★≧▶★≧▶ 差 のへぐ

subplots tier		treatments tier	
source	df	source	df
Mean	1		
Rows	4		
Columns	4		
Rows#Columns	16		
Subplots[R,C]	25		

subplots tier		treatments tier	
source	df	source	df
Mean	1	Mean	1
Rows	4		
Columns	4		
Rows#Columns	16		
Subplots[R,C]	25		

▲□▶★@▶★≧▶★≧▶ 差 のへぐ

subplots tier		treatments tier	
source	df	source	df
Mean	1	Mean	1
Rows	4		
Columns	4		
Rows#Columns	16	Varieties	4
Subplots[R,C]	25		

▲□▶★@▶★≧▶★≧▶ 差 のへぐ

subplots tier		treatments tier	
source	df	source	df
Mean	1	Mean	1
Rows	4		
Columns	4		
Rows#Columns	16	Varieties	4
Subplots[R,C]	25	Fertilizers	1
		Varieties#Fertilizers	4

subplots tier		treatments tier	
source	df	source	df
Mean	1	Mean	1
Rows	4		
Columns	4		
Rows#Columns	16	Varieties	4
		Residual	12
Subplots[R,C]	25	Fertilizers	1
		Varieties#Fertilizers	4

subplots tier		treatments tier	
source	df	source	df
Mean	1	Mean	1
Rows	4		
Columns	4		
Rows#Columns	16	Varieties	4
		Residual	12
Subplots[R,C]	25	Fertilizers	1
		Varieties#Fertilizers	4
		Residual	20

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

vector space $V_{\Gamma} = \mathbb{R}^{\Gamma}$

vector space $V_{\Omega} = \mathbb{R}^{\Omega}$

into orthogonal subspaces

into orthogonal subspaces

Decomposition \mathscr{Q} of V_{Γ} into orthogonal subspaces

Decomposition \mathscr{P} of V_{Ω} into orthogonal subspaces

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

 \mathscr{Q} further decomposes \mathscr{P}

into orthogonal subspaces

Decomposition \mathscr{P} of V_{Ω} into orthogonal subspaces

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

 \mathscr{Q} further decomposes \mathscr{P}

• What happens if the design (allocation) is not orthogonal?

Decomposition \mathscr{Q} of V_{Γ} into orthogonal subspaces

Decomposition \mathscr{P} of V_{Ω} into orthogonal subspaces

 \mathscr{Q} further decomposes \mathscr{P}

- What happens if the design (allocation) is not orthogonal?
- What happens if there are 2 or more stages of (random) allocation?

A decomposition \mathscr{P} of V_{Ω} into *n* pairwise orthogonal subspaces \equiv a set of real $\Omega \times \Omega$ matrices $\mathbf{P}_1, \dots, \mathbf{P}_n$ which

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

A decomposition \mathscr{P} of V_{Ω} into *n* pairwise orthogonal subspaces \equiv a set of real $\Omega \times \Omega$ matrices $\mathbf{P}_1, \ldots, \mathbf{P}_n$ which

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

• are symmetric $(\mathbf{P}_i = \mathbf{P}_i^{\top})$

A decomposition \mathscr{P} of V_{Ω} into *n* pairwise orthogonal subspaces \equiv a set of real $\Omega \times \Omega$ matrices $\mathbf{P}_1, \dots, \mathbf{P}_n$ which

▶ are symmetric $(\mathbf{P}_i = \mathbf{P}_i^T)$ ▶ are idempotent $(\mathbf{P}_i^2 = \mathbf{P}_i)$

A decomposition \mathscr{P} of V_{Ω} into *n* pairwise orthogonal subspaces \equiv a set of real $\Omega \times \Omega$ matrices $\mathbf{P}_1, \ldots, \mathbf{P}_n$ which

- **n**T\ ▶ are symmetric are idempotent
- are mutually orthogonal

$$(\mathbf{P}_i = \mathbf{P}_i^+)$$
$$(\mathbf{P}_i^2 = \mathbf{P}_i)$$

$$(\mathbf{P}_i\mathbf{P}_j = \mathbf{0} \text{ if } i \neq j)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

A decomposition \mathscr{P} of V_{Ω} into *n* pairwise orthogonal subspaces \equiv a set of real $\Omega \times \Omega$ matrices $\mathbf{P}_1, \ldots, \mathbf{P}_n$ which

- $(\mathbf{P}_i = \mathbf{P}_i^\top)$ ▶ are symmetric are idempotent
- are mutually orthogonal

$$(\mathbf{P}_i^2 = \mathbf{P}_i)$$

$$(\mathbf{P}_i \mathbf{P}_j = \mathbf{0} \text{ if } i \neq j)$$

A decomposition \mathscr{P} of V_{Ω} into *n* pairwise orthogonal subspaces \equiv a set of real $\Omega \times \Omega$ matrices $\mathbf{P}_1, \ldots, \mathbf{P}_n$ which

- $(\mathbf{P}_i = \mathbf{P}_i^\top)$ ▶ are symmetric are idempotent
- are mutually orthogonal

$$(\mathbf{P}_i^2 = \mathbf{P}_i)$$

$$(\mathbf{P}_i \mathbf{P}_j = \mathbf{0} \text{ if } i \neq j)$$

A decomposition \mathscr{P} of V_{Ω} into *n* pairwise orthogonal subspaces \equiv a set of real $\Omega \times \Omega$ matrices $\mathbf{P}_1, \ldots, \mathbf{P}_n$ which

- $(\mathbf{P}_i = \mathbf{P}_i^{\top})$ are symmetric $(\mathbf{P}_i^2 = \mathbf{P}_i)$ ▶ are idempotent
- are mutually orthogonal $(\mathbf{P}_i \mathbf{P}_i = \mathbf{0} \text{ if } i \neq j)$
- ▶ sum to L

A decomposition \mathscr{Q} of V_{Γ} into *m* pairwise orthogonal subspaces \equiv a set of real $\Gamma \times \Gamma$ matrices $\mathbf{Q}_1, \ldots, \mathbf{Q}_m$ which \ldots

A decomposition \mathscr{P} of V_{Ω} into *n* pairwise orthogonal subspaces \equiv a set of real $\Omega \times \Omega$ matrices $\mathbf{P}_1, \ldots, \mathbf{P}_n$ which

- $(\mathbf{P} \mathbf{P}^{\top})$ ▶ are symmetric are idempotent
- are mutually orthogonal $(\mathbf{P}_i \mathbf{P}_i = \mathbf{0} \text{ if } i \neq j)$
- ▶ sum to L

$$(\mathbf{P}_i^2 = \mathbf{P}_i)$$

- A decomposition \mathscr{Q} of V_{Γ} into *m* pairwise orthogonal subspaces
- \equiv a set of real $\Gamma \times \Gamma$ matrices $\mathbf{Q}_1, \ldots, \mathbf{Q}_m$ which \ldots

Given an allocation of Γ to Ω , we can regard subspaces of V_{Γ} as subspaces of V_{Ω} and hence regard $\mathbf{Q}_1, \ldots, \mathbf{Q}_m$ as $\Omega \times \Omega$ matrices.
$\mathbf{P}_1 + \mathbf{P}_2 + \dots + \mathbf{P}_n = \mathbf{I} \quad \text{(identity for } V_{\Omega})$ $\mathbf{Q}_1 + \mathbf{Q}_2 + \dots + \mathbf{Q}_m = \mathbf{I}_{\mathscr{Q}} \quad \text{(identity for } V_{\Gamma} \text{ in } V_{\Omega})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

$$\mathbf{P}_1 + \mathbf{P}_2 + \dots + \mathbf{P}_n = \mathbf{I} \quad \text{(identity for } V_{\Omega}\text{)}$$

$$\mathbf{Q}_1 + \mathbf{Q}_2 + \dots + \mathbf{Q}_m = \mathbf{I}_{\mathscr{Q}} \quad \text{(identity for } V_{\Gamma} \text{ in } V_{\Omega}\text{)}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで

The design is orthogonal if each subspace in \mathscr{D} is contained in a subspace in \mathscr{P} ;

$$\mathbf{P}_1 + \mathbf{P}_2 + \dots + \mathbf{P}_n = \mathbf{I} \quad \text{(identity for } V_{\Omega}\text{)}$$
$$\mathbf{Q}_1 + \mathbf{Q}_2 + \dots + \mathbf{Q}_m = \mathbf{I}_{\mathscr{Q}} \quad \text{(identity for } V_{\Gamma} \text{ in } V_{\Omega}\text{)}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

The design is orthogonal if each subspace in \mathscr{D} is contained in a subspace in \mathscr{P} ; that is, for each \mathbf{Q}_i there is some *j* such that

$$\mathbf{P}_{i}\mathbf{P}_{j}=\mathbf{P}_{j}\mathbf{Q}_{i}=\mathbf{Q}_{i}$$

$$\bullet \mathbf{Q}_i \mathbf{P}_k = \mathbf{P}_k \mathbf{Q}_i = \mathbf{0} \text{ if } k \neq j.$$

$$\mathbf{P}_1 + \mathbf{P}_2 + \dots + \mathbf{P}_n = \mathbf{I} \quad \text{(identity for } V_{\Omega}\text{)}$$
$$\mathbf{Q}_1 + \mathbf{Q}_2 + \dots + \mathbf{Q}_m = \mathbf{I}_{\mathscr{Q}} \quad \text{(identity for } V_{\Gamma} \text{ in } V_{\Omega}\text{)}$$

The design is orthogonal if each subspace in \mathscr{D} is contained in a subspace in \mathscr{P} ; that is, for each \mathbf{Q}_i there is some *j* such that

$$\mathbf{P}_i \mathbf{P}_j = \mathbf{P}_j \mathbf{Q}_i = \mathbf{Q}_i$$

$$\bullet \mathbf{Q}_i \mathbf{P}_k = \mathbf{P}_k \mathbf{Q}_i = \mathbf{0} \text{ if } k \neq j.$$

The designs in the preceding examples are both orthogonal.

ション ふぼう メリン メリン しょうめん

Structure balance (following Nelder's 'general balance')

$$\mathscr{P} \quad \mathbf{P}_1 + \mathbf{P}_2 + \dots + \mathbf{P}_n = \mathbf{I} \quad (\text{identity for } V_\Omega)$$

 $\mathscr{Q} \quad \mathbf{Q}_1 + \mathbf{Q}_2 + \dots + \mathbf{Q}_m = \mathbf{I}_{\mathscr{Q}} \quad (\text{identity for } V_{\Gamma} \text{ in } V_{\Omega})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Definition

A structure \mathscr{Q} is structure-balanced in relation to a structure \mathscr{P} if there are scalars λ_{PO} for P in \mathscr{P} and Q in \mathscr{Q} such that

(i)
$$\mathbf{QPQ} = \lambda_{\mathbf{PQ}}\mathbf{Q}$$
 for all \mathbf{P} in \mathscr{P} and all \mathbf{Q} in \mathscr{Q} , and
(ii) $\mathbf{Q}_1\mathbf{PQ}_2 = \mathbf{0}$ for all \mathbf{P} in \mathscr{P} and all $\mathbf{Q}_1 \neq \mathbf{Q}_2$ in \mathscr{Q} .

Structure balance (following Nelder's 'general balance')

$$\mathscr{P} \quad \mathbf{P}_1 + \mathbf{P}_2 + \dots + \mathbf{P}_n = \mathbf{I} \quad (\text{identity for } V_\Omega)$$

 $\mathscr{Q} \quad \mathbf{Q}_1 + \mathbf{Q}_2 + \dots + \mathbf{Q}_m = \mathbf{I}_{\mathscr{Q}} \quad (\text{identity for } V_{\Gamma} \text{ in } V_{\Omega})$

Definition

A structure \mathscr{Q} is structure-balanced in relation to a structure \mathscr{P} if there are scalars λ_{PO} for P in \mathscr{P} and Q in \mathscr{Q} such that

(i)
$$\mathbf{QPQ} = \lambda_{\mathbf{PQ}}\mathbf{Q}$$
 for all **P** in \mathscr{P} and all **Q** in \mathscr{Q} , and

(ii) $\mathbf{Q}_1 \mathbf{P} \mathbf{Q}_2 = \mathbf{0}$ for all \mathbf{P} in \mathscr{P} and all $\mathbf{Q}_1 \neq \mathbf{Q}_2$ in \mathscr{Q} .

The structure \mathscr{Q} is orthogonal in relation to \mathscr{P} if (i) and (ii) hold with each λ_{PQ} equal to either 1 or 0.

ション ふぼう メリン メリン しょうめん

Structure balance (following Nelder's 'general balance')

$$\mathscr{P} \quad \mathbf{P}_1 + \mathbf{P}_2 + \dots + \mathbf{P}_n = \mathbf{I} \quad (\text{identity for } V_\Omega)$$

 $\mathscr{Q} \quad \mathbf{Q}_1 + \mathbf{Q}_2 + \dots + \mathbf{Q}_m = \mathbf{I}_{\mathscr{Q}} \quad (\text{identity for } V_{\Gamma} \text{ in } V_{\Omega})$

Definition

A structure \mathscr{Q} is structure-balanced in relation to a structure \mathscr{P} if there are scalars λ_{PO} for P in \mathscr{P} and Q in \mathscr{Q} such that

(i)
$$\mathbf{QPQ} = \lambda_{\mathbf{PQ}}\mathbf{Q}$$
 for all **P** in \mathscr{P} and all **Q** in \mathscr{Q} , and

(ii) $\mathbf{Q}_1 \mathbf{P} \mathbf{Q}_2 = \mathbf{0}$ for all \mathbf{P} in \mathscr{P} and all $\mathbf{Q}_1 \neq \mathbf{Q}_2$ in \mathscr{Q} .

The structure \mathscr{Q} is orthogonal in relation to \mathscr{P} if (i) and (ii) hold with each λ_{PQ} equal to either 1 or 0.

The λ_{PQ} are called efficiency factors and are summarized in the $\mathscr{P} \times \mathscr{Q}$ efficiency matrix $\Lambda_{\mathscr{PQ}}$.

Fix **P** and **Q**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Fix **P** and **Q**. Then $\mathbf{QPQ} = \lambda_{\mathbf{PQ}}\mathbf{Q}$, so

Fix **P** and **Q**. Then $\mathbf{QPQ} = \lambda_{\mathbf{PQ}}\mathbf{Q}$, so

• every vector in $\text{Im}(\mathbf{Q})$ makes angle $\cos^{-1}(\lambda_{\mathbf{PQ}})$ with $\text{Im}(\mathbf{P})$;

Fix **P** and **Q**. Then $\mathbf{QPQ} = \lambda_{\mathbf{PQ}}\mathbf{Q}$, so

- every vector in $\text{Im}(\mathbf{Q})$ makes angle $\cos^{-1}(\lambda_{\mathbf{PQ}})$ with $\text{Im}(\mathbf{P})$;
- $\lambda_{\mathbf{PO}}^{-1}\mathbf{PQP}$ is the matrix of orthogonal projection onto $\mathbf{P}(\operatorname{Im}\mathbf{Q})$;

ション ふぼう メリン メリン しょうめん

Fix **P** and **Q**. Then $\mathbf{QPQ} = \lambda_{\mathbf{PQ}}\mathbf{Q}$, so

- every vector in $Im(\mathbf{Q})$ makes angle $\cos^{-1}(\lambda_{\mathbf{PQ}})$ with $Im(\mathbf{P})$;
- $\lambda_{PO}^{-1}PQP$ is the matrix of orthogonal projection onto P(ImQ);
- write $\mathbf{P} \triangleright \mathbf{Q}$ for $\lambda_{\mathbf{P}\mathbf{O}}^{-1}\mathbf{P}\mathbf{Q}\mathbf{P}$ (the part of \mathbf{P} explained by \mathbf{Q}).

・ロト・日本・日本・日本・日本

Fix **P** and **Q**. Then $\mathbf{QPQ} = \lambda_{\mathbf{PQ}}\mathbf{Q}$, so

- every vector in $Im(\mathbf{Q})$ makes angle $\cos^{-1}(\lambda_{\mathbf{PQ}})$ with $Im(\mathbf{P})$;
- $\lambda_{PO}^{-1}PQP$ is the matrix of orthogonal projection onto P(ImQ);
- write $\mathbf{P} \triangleright \mathbf{Q}$ for $\lambda_{\mathbf{PO}}^{-1} \mathbf{PQP}$ (the part of \mathbf{P} explained by \mathbf{Q}).

Fix **Q**, let **P** vary. $\Sigma \mathbf{P} = \mathbf{I}$ implies that $\Sigma_{\mathbf{P}} \lambda_{\mathbf{PQ}} = 1$.

- Fix **P**, let **Q** vary.
 - $\mathbf{Q}_1 \mathbf{P} \mathbf{Q}_2 = \mathbf{0}$ implies that

$P(\text{Im}(Q_1)) \quad \bot \quad P(\text{Im}(Q_2)), \qquad \text{so}$

 $\mathbf{P} \triangleright \mathbf{Q}_1$ and $\mathbf{P} \triangleright \mathbf{Q}_2$ correspond to orthogonal subspaces of $\text{Im}(\mathbf{P})$.

- Fix **P**, let **Q** vary.
 - $\mathbf{Q}_1 \mathbf{P} \mathbf{Q}_2 = \mathbf{0}$ implies that

 $P(\text{Im}(\mathbf{Q}_1)) \quad \bot \quad P(\text{Im}(\mathbf{Q}_2)), \qquad \text{so}$

P ▷ Q₁ and P ▷ Q₂ correspond to orthogonal subspaces of Im(P).
Write

$$\mathbf{P}\vdash \mathscr{Q}=\mathbf{P}-\sum_{\mathbf{Q}}\mathbf{P}\rhd\mathbf{Q},$$

so that $\mathbf{P} \vdash \mathscr{Q}$ corresponds to $\operatorname{Im}(\mathbf{P}) \cap V_{\Gamma}^{\perp}$ (residual in \mathbf{P}).

- Fix **P**, let **Q** vary.
 - $\mathbf{Q}_1 \mathbf{P} \mathbf{Q}_2 = \mathbf{0}$ implies that

 $P(\text{Im}(\mathbf{Q}_1)) \quad \bot \quad P(\text{Im}(\mathbf{Q}_2)), \qquad \text{so}$

P ▷ Q₁ and P ▷ Q₂ correspond to orthogonal subspaces of Im(P).
Write

$$\mathbf{P}\vdash \mathscr{Q}=\mathbf{P}-\sum_{\mathbf{Q}}\mathbf{P}\rhd\mathbf{Q},$$

so that $\mathbf{P} \vdash \mathscr{Q}$ corresponds to $\operatorname{Im}(\mathbf{P}) \cap V_{\Gamma}^{\perp}$ (residual in \mathbf{P}).

- Fix **P**, let **Q** vary.
 - $\mathbf{Q}_1 \mathbf{P} \mathbf{Q}_2 = \mathbf{0}$ implies that

 $P(\text{Im}(\mathbf{Q}_1)) \quad \bot \quad P(\text{Im}(\mathbf{Q}_2)), \qquad \text{so}$

P ▷ Q₁ and P ▷ Q₂ correspond to orthogonal subspaces of Im(P).
Write

$$\mathbf{P}\vdash \mathscr{Q}=\mathbf{P}-\sum_{\mathbf{Q}}\mathbf{P}\triangleright\mathbf{Q},$$

so that $\mathbf{P} \vdash \mathscr{Q}$ corresponds to $\operatorname{Im}(\mathbf{P}) \cap V_{\Gamma}^{\perp}$ (residual in \mathbf{P}).

So $\mathbf{P} \triangleright \mathbf{Q}_1, \mathbf{P} \triangleright \mathbf{Q}_2, \dots, \mathbf{P} \triangleright \mathbf{Q}_m, \mathbf{P} \vdash \mathscr{Q}$ decompose \mathbf{P} orthogonally.

- Fix **P**, let **Q** vary.
 - $\mathbf{Q}_1 \mathbf{P} \mathbf{Q}_2 = \mathbf{0}$ implies that

 $P(\text{Im}(\mathbf{Q}_1)) \quad \bot \quad P(\text{Im}(\mathbf{Q}_2)), \qquad \text{so}$

P ▷ Q₁ and P ▷ Q₂ correspond to orthogonal subspaces of Im(P).
Write

$$\mathbf{P}\vdash \mathscr{Q}=\mathbf{P}-\sum_{\mathbf{Q}}\mathbf{P}\rhd\mathbf{Q},$$

so that $\mathbf{P} \vdash \mathscr{Q}$ corresponds to $\operatorname{Im}(\mathbf{P}) \cap V_{\Gamma}^{\perp}$ (residual in **P**).

So $\mathbf{P} \triangleright \mathbf{Q}_1$, $\mathbf{P} \triangleright \mathbf{Q}_2$, ..., $\mathbf{P} \triangleright \mathbf{Q}_m$, $\mathbf{P} \vdash \mathscr{Q}$ decompose \mathbf{P} orthogonally.

 $\mathscr{P} \rhd \mathscr{Q} = \{ \mathbf{P} \rhd \mathbf{Q} : \mathbf{P} \in \mathscr{P}, \ \mathbf{Q} \in \mathscr{Q}, \ \lambda_{\mathbf{P}\mathbf{Q}} \neq 0 \} \cup \{ \mathbf{P} \vdash \mathscr{Q} : \mathbf{P} \in \mathscr{P} \}.$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで

observations		
source	df	
Mean	1	
Colours	1	
Slides	7	
Colours # Slides	7	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

observations			treatments	
source	df	eff	source	df
Mean	1	1	Mean	1
Colours	1			
Slides	7			
Colours # Slides	7			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

observations			treatments	
source	df	eff	source	df
Mean	1	1	Mean	1
Colours	1			
Slides	7			
Colours # Slides	7	1	Control-v-rest	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

observations			treatments	
source	df	eff	source	df
Mean	1	1	Mean	1
Colours	1			
Slides	7	$\frac{1}{2}$	Within-rest	3
Colours # Slides	7	1	Control-v-rest	1
		$\frac{1}{2}$	Within-rest	3

observations			treatments	
source	df	eff	source	df
Mean	1	1	Mean	1
Colours	1			
Slides	7	$\frac{1}{2}$	Within-rest	3
			Residual	4
Colours # Slides	7	1	Control-v-rest	1
		$\frac{1}{2}$	Within-rest	3
			Residual	3

Laboratory animals (White, 1975)

Laboratory animals (White, 1975)

Meat-loaves (T. B. Bailey)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

 $\mathscr{R} \longrightarrow \mathscr{Q} \longrightarrow \mathscr{P}$

 $\mathscr{R} \longrightarrow \mathscr{Q} \longrightarrow \mathscr{P}$

Theorem If \mathscr{Q} is structure-balanced in relation to \mathscr{P} (with efficiency matrix $\Lambda_{\mathscr{PQ}}$) and \mathscr{R} is structure-balanced in relation to \mathscr{Q} (with efficiency matrix $\Lambda_{\mathscr{QR}}$) then

• \mathscr{R} is structure-balanced in relation to \mathscr{P} and $\Lambda_{\mathscr{PR}} = \Lambda_{\mathscr{PQ}} \Lambda_{\mathscr{QR}}$;

 $\mathscr{R} \longrightarrow \mathscr{Q} \longrightarrow \mathscr{P}$

Theorem If \mathscr{Q} is structure-balanced in relation to \mathscr{P} (with efficiency matrix $\Lambda_{\mathscr{P}\mathscr{Q}}$) and \mathscr{R} is structure-balanced in relation to \mathscr{Q} (with efficiency matrix $\Lambda_{\mathscr{Q}\mathscr{R}}$) then

• \mathscr{R} is structure-balanced in relation to \mathscr{P} and $\Lambda_{\mathscr{PR}} = \Lambda_{\mathscr{PQ}}\Lambda_{\mathscr{QR}}$;

ション ふぼう メリン メリン しょうめん

• \mathscr{R} is structure-balanced in relation to $\mathscr{P} \triangleright \mathscr{Q}$ (and $\Lambda \dots$);

 $\mathscr{R} \longrightarrow \mathscr{Q} \longrightarrow \mathscr{P}$

Theorem

If \mathscr{Q} is structure-balanced in relation to \mathscr{P} (with efficiency matrix $\Lambda_{\mathscr{PQ}}$) and \mathscr{R} is structure-balanced in relation to \mathscr{Q} (with efficiency matrix $\Lambda_{\mathscr{QR}}$) then

• \mathscr{R} is structure-balanced in relation to \mathscr{P} and $\Lambda_{\mathscr{PR}} = \Lambda_{\mathscr{PQ}} \Lambda_{\mathscr{QR}}$;

ション ふぼう メリン メリン しょうめん

- \mathscr{R} is structure-balanced in relation to $\mathscr{P} \triangleright \mathscr{Q}$ (and $\Lambda \dots$);
- $\mathcal{Q} \triangleright \mathcal{R}$ is structure-balanced in relation to \mathcal{P} (and $\Lambda \dots$);

 $\mathcal{R} \longrightarrow \mathcal{Q} \longrightarrow \mathcal{P}$

Theorem

If \mathscr{Q} is structure-balanced in relation to \mathscr{P} (with efficiency matrix $\Lambda_{\mathscr{PQ}}$) and \mathscr{R} is structure-balanced in relation to \mathscr{Q} (with efficiency matrix $\Lambda_{\mathscr{QR}}$) then

• \mathscr{R} is structure-balanced in relation to \mathscr{P} and $\Lambda_{\mathscr{PR}} = \Lambda_{\mathscr{PQ}} \Lambda_{\mathscr{QR}}$;

- \mathscr{R} is structure-balanced in relation to $\mathscr{P} \triangleright \mathscr{Q}$ (and $\Lambda \dots$);
- $\mathcal{Q} \triangleright \mathcal{R}$ is structure-balanced in relation to \mathcal{P} (and $\Lambda \dots$);
- $\blacktriangleright \ (\mathscr{P} \rhd \mathscr{Q}) \rhd \mathscr{R} = \mathscr{P} \rhd (\mathscr{Q} \rhd \mathscr{R}).$

animals t	tier	
source	df	
Mean	1	
Animals	59	

animals	animals tier		ier	
source	df	source	df	
Mean	1	Mean	1	
Animals	59	Days	9	

animals t	ier	days tier		
source	df	source	df	
Mean	1	Mean	1	
Animals	59	Days	9	
		Residual	50	

animals	tier	days tier		treatments tier	
source	df	source	df	source	df
Mean	1	Mean	1	Mean	1
Animals	59	Days	9	Drugs	1
		Residual	50		
Laboratory animals: skeleton anova

animals tier		days tier		treatments tier		
source	df	source	df	source	df	
Mean	1	Mean	1	Mean	1	
Animals	59	Days 9		Drugs	1	
				Residual	8	
		Residual	50			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Laboratory animals: skeleton anova

animals tier		days tier		treatments tier		
source	df	source	df	source	df	
Mean	1	Mean	1	Mean	1	
Animals	59	Days 9		Drugs	1	
				Residual	8	
		Residual	50			

 Differences between Drugs are confounded with differences between Days and differences between Animals.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Laboratory animals: skeleton anova

animals tier		days tier		treatments tier		
source	df	source	df	source	df	
Mean	1	Mean	1	Mean	1	
Animals	59	Days 9		Drugs	1	
				Residual	8	
		Residual	50			

- Differences between Drugs are confounded with differences between Days and differences between Animals.
- The 8-df Residual gives the variability between Days plus the variability between Animals.

Meatloaves: skeleton anova

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Meatloaves: skeleton anova

tastings tier		meatloaves tier		treatments tier	
source	df	source	df	source	df
Mean	1	Mean	1	Mean	1
Replicates	2	Blocks	2		
Panellists[Reps]	33				
Time-orders[Reps]	15				
P#T[Reps]	165	Meatloaves[B]	15	Rosemary	1
				Irradiation	2
				R# I	2
				Residual	10
		Residual	150		
			Image: 1 million	(二) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) I

$$\mathcal{Q} \longrightarrow \mathcal{P} \longleftarrow \mathcal{R}$$

There are three possibilities.

$$\mathscr{Q} \longrightarrow \mathscr{P} \longleftarrow \mathscr{R}$$

There are three possibilities.

Unrandomized-inclusive randomizations

The outcome of the randomization $\mathscr{Q} \longrightarrow \mathscr{P}$ is known; the design for $\mathscr{R} \longrightarrow \mathscr{P}$ and method of randomizing $\mathscr{R} \longrightarrow \mathscr{P}$ both use knowledge of $\mathscr{P} \rhd \mathscr{Q}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

$$\mathscr{Q} \longrightarrow \mathscr{P} \longleftarrow \mathscr{R}$$

There are three possibilities.

Unrandomized-inclusive randomizations

The outcome of the randomization $\mathscr{Q} \longrightarrow \mathscr{P}$ is known; the design for $\mathscr{R} \longrightarrow \mathscr{P}$ and method of randomizing $\mathscr{R} \longrightarrow \mathscr{P}$ both use knowledge of $\mathscr{P} \rhd \mathscr{Q}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

$$\mathscr{Q} \longrightarrow \mathscr{P} \longleftarrow \mathscr{R}$$

There are three possibilities.

Unrandomized-inclusive randomizations

The outcome of the randomization $\mathscr{Q} \longrightarrow \mathscr{P}$ is known; the design for $\mathscr{R} \longrightarrow \mathscr{P}$ and method of randomizing $\mathscr{R} \longrightarrow \mathscr{P}$ both use knowledge of $\mathscr{P} \rhd \mathscr{Q}$. Assume that \mathscr{Q} is structure-balanced in relation to \mathscr{P} , and that \mathscr{R} is structure-balanced in relation to $\mathscr{P} \rhd \mathscr{Q}$. Use the decomposition $(\mathscr{P} \rhd \mathscr{Q}) \rhd \mathscr{R}$.

Superimposed Experiment in a Row-Column Design

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Superimposed Experiment in a Row-Column Design

trees tier	rootstocks tier		treatments tier			
source	df	source	df	eff	source	df
Mean	1	Mean	1		Mean	1
Blocks	2					
Trees[Blocks]	27	Rootstocks	9	$\frac{1}{6}$	Viruses	4
					Residual	5
		Residual	18	$\frac{5}{6}$	Viruses	4
					Residual	14

 $\mathcal{Q} \longrightarrow \mathcal{P} \longleftarrow \mathcal{R}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Independent randomizations

The two structurally balanced designs are chosen so that, for all **P** except the Mean, either every **PQ** is zero or every **PR** is zero. Thus \mathcal{Q} and \mathcal{R} do not interfere with each other in \mathcal{P} .

 $\mathcal{Q} \longrightarrow \mathcal{P} \longleftarrow \mathcal{R}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Independent randomizations

The two structurally balanced designs are chosen so that, for all **P** except the Mean, either every **PQ** is zero or every **PR** is zero. Thus \mathcal{Q} and \mathcal{R} do not interfere with each other in \mathcal{P} .

 $\mathcal{Q} \longrightarrow \mathcal{P} \longleftarrow \mathcal{R}$

Independent randomizations

The two structurally balanced designs are chosen so that, for all **P** except the Mean, either every **PQ** is zero or every **PR** is zero. Thus \mathcal{Q} and \mathcal{R} do not interfere with each other in \mathcal{P} .

• \mathscr{Q} is structure-balanced in relation to $\mathscr{P} \triangleright \mathscr{R}$;

 $\mathcal{Q} \longrightarrow \mathcal{P} \longleftarrow \mathcal{R}$

ション ふぼう メリン メリン しょうめん

Independent randomizations

The two structurally balanced designs are chosen so that, for all **P** except the Mean,

either every PQ is zero or every PR is zero.

Thus \mathscr{Q} and \mathscr{R} do not interfere with each other in \mathscr{P} .

- \mathscr{Q} is structure-balanced in relation to $\mathscr{P} \triangleright \mathscr{R}$;
- \mathscr{R} is structure-balanced in relation to $\mathscr{P} \triangleright \mathscr{Q}$;

 $\mathcal{Q} \longrightarrow \mathcal{P} \longleftarrow \mathcal{R}$

ション ふぼう メリン メリン しょうめん

Independent randomizations

The two structurally balanced designs are chosen so that, for all \mathbf{P} except the Mean,

either every PQ is zero or every PR is zero.

Thus \mathscr{Q} and \mathscr{R} do not interfere with each other in \mathscr{P} .

- \mathscr{Q} is structure-balanced in relation to $\mathscr{P} \triangleright \mathscr{R}$;
- \mathscr{R} is structure-balanced in relation to $\mathscr{P} \triangleright \mathscr{Q}$;
- $\blacktriangleright \ (\mathscr{P} \rhd \mathscr{R}) \rhd \mathscr{Q} = (\mathscr{P} \rhd \mathscr{Q}) \rhd \mathscr{R}.$

$$\mathscr{Q} \longrightarrow \mathscr{P} \longleftarrow \mathscr{R}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Coincident randomizations

The two structurally balanced designs are chosen so that, for all **P**, **Q**, **R**

- ► either **PQ** is zero (after **P**, ignore **Q**)
- ► or **PR** is zero (after **P**, ignore **R**)
- or $\mathbf{P} \triangleright \mathbf{Q} = \mathbf{P}$ (after \mathbf{P} , do \mathbf{Q} before \mathbf{R})
- or $\mathbf{P} \triangleright \mathbf{R} = \mathbf{P}$ (after \mathbf{P} , do \mathbf{R} before \mathbf{Q}).

$$\mathscr{Q} \longrightarrow \mathscr{P} \longleftarrow \mathscr{R}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Coincident randomizations

The two structurally balanced designs are chosen so that, for all **P**, **Q**, **R**

- ► either **PQ** is zero (after **P**, ignore **Q**)
- ► or **PR** is zero (after **P**, ignore **R**)
- or $\mathbf{P} \triangleright \mathbf{Q} = \mathbf{P}$ (after \mathbf{P} , do \mathbf{Q} before \mathbf{R})
- or $\mathbf{P} \triangleright \mathbf{R} = \mathbf{P}$ (after \mathbf{P} , do \mathbf{R} before \mathbf{Q}).

$$\mathscr{Q} \longrightarrow \mathscr{P} \longleftarrow \mathscr{R}$$

Coincident randomizations

The two structurally balanced designs are chosen so that, for all **P**, **Q**, **R**

- ► either **PQ** is zero (after **P**, ignore **Q**)
- ► or **PR** is zero (after **P**, ignore **R**)
- or $\mathbf{P} \triangleright \mathbf{Q} = \mathbf{P}$ (after \mathbf{P} , do \mathbf{Q} before \mathbf{R})
- or $\mathbf{P} \triangleright \mathbf{R} = \mathbf{P}$ (after \mathbf{P} , do \mathbf{R} before \mathbf{Q}).

Then the decompositions $\mathscr{P} \triangleright \mathscr{Q}$ and $\mathscr{P} \triangleright \mathscr{R}$ are compatible in the sense that if $\mathbf{A} \in \mathscr{P} \triangleright \mathscr{Q}$ and $\mathbf{B} \in \mathscr{P} \triangleright \mathscr{R}$ then $\mathbf{AB} = \mathbf{BA}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

$$\mathscr{Q} \longrightarrow \mathscr{P} \longleftarrow \mathscr{R}$$

Coincident randomizations

The two structurally balanced designs are chosen so that, for all **P**, **Q**, **R**

- ► either **PQ** is zero (after **P**, ignore **Q**)
- ► or **PR** is zero (after **P**, ignore **R**)
- or $\mathbf{P} \triangleright \mathbf{Q} = \mathbf{P}$ (after \mathbf{P} , do \mathbf{Q} before \mathbf{R})
- or $\mathbf{P} \triangleright \mathbf{R} = \mathbf{P}$ (after \mathbf{P} , do \mathbf{R} before \mathbf{Q}).

Then the decompositions $\mathscr{P} \triangleright \mathscr{Q}$ and $\mathscr{P} \triangleright \mathscr{R}$ are compatible in the sense that if $\mathbf{A} \in \mathscr{P} \triangleright \mathscr{Q}$ and $\mathbf{B} \in \mathscr{P} \triangleright \mathscr{R}$ then $\mathbf{AB} = \mathbf{BA}$. Hence

$$\{\mathbf{AB}:\mathbf{A}\in\mathscr{P}\rhd\mathscr{Q},\ \mathbf{B}\in\mathscr{P}\rhd\mathscr{R}\}$$

gives an orthogonal decomposition of V_{Ω} .

We can extend this to three or more randomizations, so long as each one is structure-balanced.

- We can extend this to three or more randomizations, so long as each one is structure-balanced.
- We get formulae for expected mean squares: each is a sum of terms from different tiers, with coefficients which depend on the efficiency factors.

- We can extend this to three or more randomizations, so long as each one is structure-balanced.
- We get formulae for expected mean squares: each is a sum of terms from different tiers, with coefficients which depend on the efficiency factors.
- ► The anova tables help to compare different potential designs ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- We can extend this to three or more randomizations, so long as each one is structure-balanced.
- We get formulae for expected mean squares: each is a sum of terms from different tiers, with coefficients which depend on the efficiency factors.
- ► The anova tables help to compare different potential designs ...

ション ふぼう メリン メリン しょうめん

• ... and so are useful for design as well as for analysis.

- We can extend this to three or more randomizations, so long as each one is structure-balanced.
- We get formulae for expected mean squares: each is a sum of terms from different tiers, with coefficients which depend on the efficiency factors.
- ► The anova tables help to compare different potential designs ...
- ... and so are useful for design as well as for analysis.
- For example, in a two stage experiment with partial confounding of some treatment contrasts in each stage, is it better to partially confound

ション ふぼう メリン メリン しょうめん

- We can extend this to three or more randomizations, so long as each one is structure-balanced.
- We get formulae for expected mean squares: each is a sum of terms from different tiers, with coefficients which depend on the efficiency factors.
- ► The anova tables help to compare different potential designs ...
- ... and so are useful for design as well as for analysis.
- For example, in a two stage experiment with partial confounding of some treatment contrasts in each stage, is it better to partially confound
 - the same treatment contrasts with block terms at both stages (thus obtaining very poor precision on those contrasts)

ション ふぼう メリン メリン しょうめん

- We can extend this to three or more randomizations, so long as each one is structure-balanced.
- We get formulae for expected mean squares: each is a sum of terms from different tiers, with coefficients which depend on the efficiency factors.
- ► The anova tables help to compare different potential designs ...
- ... and so are useful for design as well as for analysis.
- For example, in a two stage experiment with partial confounding of some treatment contrasts in each stage, is it better to partially confound
 - the same treatment contrasts with block terms at both stages (thus obtaining very poor precision on those contrasts)
 - or some treatment contrasts with Stage 1 blocks and different treatment contrasts with Stage 2 blocks (thus decreasing the number of residual degrees of freedom)?

- We can extend this to three or more randomizations, so long as each one is structure-balanced.
- We get formulae for expected mean squares: each is a sum of terms from different tiers, with coefficients which depend on the efficiency factors.
- ► The anova tables help to compare different potential designs ...
- ... and so are useful for design as well as for analysis.
- For example, in a two stage experiment with partial confounding of some treatment contrasts in each stage, is it better to partially confound
 - the same treatment contrasts with block terms at both stages (thus obtaining very poor precision on those contrasts)
 - or some treatment contrasts with Stage 1 blocks and different treatment contrasts with Stage 2 blocks (thus decreasing the number of residual degrees of freedom)?
- In many cases, the models can be justified by the randomization employed.

References

- 1. C. J. Brien and R. A. Bailey: Multiple randomizations (with discussion). *Journal of the Royal Statistical Society, Series B* **68** (2006), 571–609.
- 2. C. J. Brien and R. A. Bailey: Decomposition tables for multitiered experiments. Submitted for publication.
- 3. A. Gelman: Analysis of variance—Why it is more important than ever (with discussion). *Annals of Statistics* **33** (2005), 1–53.
- 4. A. T. James and G. N. Wilkinson: Factorization of the residual operator and canonical decomposition of nonorthogonal factors in the analysis of variance. *Biometrika* **58** (1971), 279–294.
- J. A. Nelder: The analysis of randomized experiments with orthogonal block structure. I. Block structure and the null analysis of variance. II. Treatment structure and the general analysis of variance. *Proceedings of the Royal Society of London, Series A* 283 (1965), 147–178.
- 6. R. F. White: Randomization and the analysis of variance. Biometrics, **31** (1975), 552–572.