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An experiment on an industrial process: skeleton anova
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The skeleton analysis of variance shows

I which “block” term the Variations term is confounded with,
hence the likely magnitude of the variance of the estimator of the
contrast between any two variations

I the relevant residual term, and its degrees of freedom,
hence the likely precision of the estimator of that variance,
and information about the power of a hypothesis test.
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Q further decomposes P

I What happens if the design (allocation) is not orthogonal?
I What happens if there are 2 or more stages of (random)

allocation?
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A pair of orthogonal decompositions

A decomposition P of VΩ into n pairwise orthogonal subspaces
≡ a set of real Ω×Ω matrices P1, . . . , Pn which

I are symmetric (Pi = P>i )
I are idempotent (P2

i = Pi)
I are mutually orthogonal (PiPj = 0 if i 6= j)
I sum to I.

A decomposition Q of VΓ into m pairwise orthogonal subspaces
≡ a set of real Γ×Γ matrices Q1, . . . , Qm which . . .

Given an allocation of Γ to Ω, we can regard subspaces of VΓ as
subspaces of VΩ and hence regard Q1, . . . , Qm as Ω×Ω matrices.
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A pair of orthogonal decompositions: continued

P1 +P2 + · · ·+Pn = I (identity for VΩ)

Q1 +Q2 + · · ·+Qm = IQ (identity for VΓ in VΩ)

The design is orthogonal if
each subspace in Q is contained in a subspace in P;
that is, for each Qi there is some j such that

I QiPj = PjQi = Qi

I QiPk = PkQi = 0 if k 6= j.

The designs in the preceding examples are both orthogonal.
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Structure balance (following Nelder’s ‘general balance’)

P P1 +P2 + · · ·+Pn = I (identity for VΩ)

Q Q1 +Q2 + · · ·+Qm = IQ (identity for VΓ in VΩ)

Definition
A structure Q is structure-balanced in relation to a structure P
if there are scalars λPQ for P in P and Q in Q such that

(i) QPQ = λPQQ for all P in P and all Q in Q, and

(ii) Q1PQ2 = 0 for all P in P and all Q1 6= Q2 in Q.

The structure Q is orthogonal in relation to P if (i) and (ii) hold with
each λPQ equal to either 1 or 0.
The λPQ are called efficiency factors and are summarized in the
P×Q efficiency matrix ΛPQ.
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Structure balance (using James and Wilkinson)

Fix P and Q.

Then QPQ = λPQQ, so
I every vector in Im(Q) makes angle cos−1(λPQ) with Im(P);
I λ

−1
PQPQP is the matrix of orthogonal projection onto P(ImQ);

I write PBQ for λ
−1
PQPQP (the part of P explained by Q).
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Fix Q, let P vary.
I ∑P = I implies that ∑P λPQ = 1.
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Structure balance (using James and Wilkinson)

Fix P and Q. Then QPQ = λPQQ, so
I every vector in Im(Q) makes angle cos−1(λPQ) with Im(P);
I λ

−1
PQPQP is the matrix of orthogonal projection onto P(ImQ);

I write PBQ for λ
−1
PQPQP (the part of P explained by Q).
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Structure balance

Fix P, let Q vary.
I Q1PQ2 = 0 implies that

P(Im(Q1)) ⊥ P(Im(Q2)), so

PBQ1 and PBQ2 correspond to orthogonal subspaces of Im(P).

I Write
P`Q = P−∑

Q
PBQ,

so that P`Q corresponds to Im(P)∩V⊥
Γ

(residual in P).

So PBQ1, PBQ2, . . . , PBQm, P`Q decompose P orthogonally.

P BQ = {PBQ : P ∈P, Q ∈Q, λPQ 6= 0}∪{P`Q : P ∈P} .
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Toy example from micorarrays
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eff source df

Mean 1
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Colours 1
Slides 7

1
2 Within-rest 3

Residual 4

Colours # Slides 7

1 Control-v-rest 1
1
2 Within-rest 3

Residual 3
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Experiments with two randomizations

Laboratory animals (White, 1975)�� ��2 Drugs
�� ��10 Days

�� ��60 Animals- -

Meat-loaves (T. B. Bailey)�
�

�


2 Rosemary
3 Irradiation

�
�

�


3 Blocks
6 Meatloaves in B

�
�

�
�

3 Replicates
12 Panellists in R
6 Time-orders in R

t -Q
Q

- d⊥���
XXX

-

6 treatments 18 meatloaves 216 tastings
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Structure balance when one arrow follows another

R −→Q −→P

Theorem
If Q is structure-balanced in relation to P
(with efficiency matrix ΛPQ)
and R is structure-balanced in relation to Q
(with efficiency matrix ΛQR)
then

I R is structure-balanced in relation to P and ΛPR = ΛPQΛQR ;
I R is structure-balanced in relation to P BQ (and Λ . . . );
I Q BR is structure-balanced in relation to P (and Λ . . . );
I (P BQ)BR = P B (Q BR).
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Laboratory animals: skeleton anova

�� ��2 Drugs
�� ��10 Days

�� ��60 Animals- -

animals tier

days tier treatments tier

source df

source df source df

Mean 1

Mean 1 Mean 1

Animals 59

Days 9 Drugs 1
Residual 8

Residual 50

I Differences between Drugs are confounded with differences
between Days and differences between Animals.

I The 8-df Residual gives the variability between Days plus the
variability between Animals.
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Meatloaves: skeleton anova�
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2 Rosemary
3 Irradiation
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3 Blocks
6 Meatloaves in B

�
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3 Replicates
12 Panellists in R
6 Time-orders in R

t -Q
Q

- d⊥���
XXX

-

6 treatments 18 meatloaves 216 tastings

tastings tier meatloaves tier treatments tier
source df source df source df
Mean 1 Mean 1 Mean 1
Replicates 2 Blocks 2
Panellists[Reps] 33
Time-orders[Reps] 15
P#T[Reps] 165 Meatloaves[B] 15 Rosemary 1

Irradiation 2
R# I 2
Residual 10

Residual 150
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Structure balance when two arrows have the same end (1)

Q −→P ←−R

There are three possibilities.

Unrandomized-inclusive randomizations
The outcome of the randomization Q −→P is known;
the design for R −→P and method of randomizing R −→P both
use knowledge of P BQ.
Assume that Q is structure-balanced in relation to P ,
and that R is structure-balanced in relation to P BQ.
Use the decompostion (P BQ)BR.
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Superimposed Experiment in a Row-Column Design
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5 treatments

10 rootstocks 30 trees

trees tier rootstocks tier treatments tier
source df source df eff source df
Mean 1 Mean 1 Mean 1
Blocks 2
Trees[Blocks] 27 Rootstocks 9 1

6 Viruses 4
Residual 5

Residual 18 5
6 Viruses 4

Residual 14
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Structure balance when two arrows have the same end (2)

Q −→P ←−R

Independent randomizations

The two structurally balanced designs are chosen so that,
for all P except the Mean,
either every PQ is zero or every PR is zero.
Thus Q and R do not interfere with each other in P .

I Q is structure-balanced in relation to P BR;
I R is structure-balanced in relation to P BQ;
I (P BR)BQ = (P BQ)BR.



Structure balance when two arrows have the same end (2)

Q −→P ←−R

Independent randomizations

The two structurally balanced designs are chosen so that,
for all P except the Mean,
either every PQ is zero or every PR is zero.
Thus Q and R do not interfere with each other in P .

I Q is structure-balanced in relation to P BR;
I R is structure-balanced in relation to P BQ;
I (P BR)BQ = (P BQ)BR.



Structure balance when two arrows have the same end (2)

Q −→P ←−R

Independent randomizations

The two structurally balanced designs are chosen so that,
for all P except the Mean,
either every PQ is zero or every PR is zero.
Thus Q and R do not interfere with each other in P .

I Q is structure-balanced in relation to P BR;

I R is structure-balanced in relation to P BQ;
I (P BR)BQ = (P BQ)BR.



Structure balance when two arrows have the same end (2)

Q −→P ←−R

Independent randomizations

The two structurally balanced designs are chosen so that,
for all P except the Mean,
either every PQ is zero or every PR is zero.
Thus Q and R do not interfere with each other in P .

I Q is structure-balanced in relation to P BR;
I R is structure-balanced in relation to P BQ;

I (P BR)BQ = (P BQ)BR.



Structure balance when two arrows have the same end (2)

Q −→P ←−R

Independent randomizations

The two structurally balanced designs are chosen so that,
for all P except the Mean,
either every PQ is zero or every PR is zero.
Thus Q and R do not interfere with each other in P .

I Q is structure-balanced in relation to P BR;
I R is structure-balanced in relation to P BQ;
I (P BR)BQ = (P BQ)BR.



Structure balance when two arrows have the same end (3)

Q −→P ←−R

Coincident randomizations
The two structurally balanced designs are chosen so that,
for all P, Q, R

I either PQ is zero (after P, ignore Q)
I or PR is zero (after P, ignore R)
I or PBQ = P (after P, do Q before R)
I or PBR = P (after P, do R before Q).

Then the decompositions P BQ and P BR are compatible in the
sense that if A ∈P BQ and B ∈P BR then AB = BA. Hence

{AB : A ∈P BQ, B ∈P BR}

gives an orthogonal decomposition of VΩ.
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Summary

I We can extend this to three or more randomizations,
so long as each one is structure-balanced.

I We get formulae for expected mean squares:
each is a sum of terms from different tiers,
with coefficients which depend on the efficiency factors.

I The anova tables help to compare different potential designs . . .
I . . . and so are useful for design as well as for analysis.
I For example, in a two stage experiment with partial confounding

of some treatment contrasts in each stage, is it better to partially
confound

I the same treatment contrasts with block terms at both stages (thus
obtaining very poor precision on those contrasts)

I or some treatment contrasts with Stage 1 blocks and different
treatment contrasts with Stage 2 blocks (thus decreasing the
number of residual degrees of freedom)?

I In many cases, the models can be justified by the randomization
employed.
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