	Abstract
Using graphs to find optimal block designs R. A. Bailey University of St Andrews / QMUL (emerita) Special session for Ching-Shui Cheng, 20 June 2013	Ching-Shui Cheng was one of the pioneers of using graph theory to prove results about optimal incomplete-block designs. There are actually two graphs associated with an incomplete-block design, and either can be used. A block design is D-optimal if it maximizes the number of spanning trees; it is A-optimal if it minimizes the total of the pairwise resistances when the graph is thought of as an electrical network. I shall report on some surprising results about optimal designs when replication is very low.

Conference on Design of Experiments, Tianjin, June 2006	Problem 1: Factorial design
<image/> <image/>	 Problem There are several treatment factors, with various numbers of levels. There may not be room to include all combinations of these levels. There are several inherent factors (also called block factors) on the experimental units. The inherent factors may pose some constraints on how treatment factors can be applied. So how do we set about designing the experiment? Solution Use Desmond Patterson's design key.

Problem 2: Optimal incomplete-block design	Two papers about the second problem
 Problem The design must be in blocks, but each block is too small to contain every treatment. We want variance to be small, as measured by the D-criterion (minimizing the volume of the ellpsoid of confidence). How do we set about finding a D-optimal block design? Solution Represent the incomplete-block design as a graph (with vertices and edges), and maximize the number of spanning trees in the graph. 	 Ch'ing Shui Chêng: Maximizing the total number of spanning trees in a graph: two related problems in graph theory and optimum design theory. <i>Journal of Combinatorial Theory, Series B</i> 31 (1981), 240–248. Ching-Shui Cheng: Graph and optimum design theories—some connections and examples. <i>Bulletin of the International Statistical Institute</i> 49 (1981), part 1, 580–590.

Some early papers		Two memorial conferences for R. C. Bose, India, 1988
YearRAB1977factorial (design key)1978factorial (design key)1979factorial (design key)19791980198119821982factorial1984IBDs1985factorial; IBDs1986IBDs19881989	CSC optimal IBDs optimal IBDs; factorial optimal IBDs; factorial optimal IBDs and graphs IBDs and graphs; factorial with trend IBDs factorial with trend factorial	Calcutta meeting on <i>Combinatorial Mathematics and Applications</i> : CSC spoke on "On the optimality of (M.S)-optimal designs in large systems". Delhi meeting on <i>Probability, Statistics and Design of Experiments</i> : RAB spoke on "Cyclic designs and factorial designs".

Two joint papers	Some la	ter papers and books	
 CS. Cheng and R. A. Bailey: Optimality of some two-associate-class partially balanced incomplete-block designs. <i>Annals of Statistics</i> 19 (1991), 1667–1671. R. A. Bailey, Ching-Shui Cheng and Patricia Kipnis: Construction of trend-resistant factorial designs. <i>Statistica Sinica</i> 2 (1992), 393–411. 	Year 1993 1995 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2009 2011 2013	RAB optimal IBDs IBDs IBDs optimal IBDs and graphs optimal IBDs and graphs factorial optimal IBDs and graphs	CSC factorial; optimal IBDs factorial; BIBDs factorial factorial factorial factorial factorial factorial factorial factorial factorial factorial factorial factorial factorial factorial factorial factorial
9/4/	1		10/

Experimental units and incidence matrix	Levi graph
There are <i>bk</i> experimental units. If ω is an experimental unit, put $f(\omega) =$ treatment on ω $g(\omega) =$ block containing ω . For $i = 1,, v$ and $j = 1,, b$, let $n_{ij} = \{\omega : f(\omega) = i \text{ and } g(\omega) = j\} $ = number of experimental units in block <i>j</i> which have treatment <i>i</i> . The $v \times b$ incidence matrix <i>N</i> has entries n_{ij} .	 The Levi graph Ğ of a block design Δ has one vertex for each treatment, one vertex for each block, one edge for each experimental unit, with edge ω joining vertex f(ω) to vertex g(ω). It is a bipartite graph, with n_{ij} edges between treatment-vertex <i>i</i> and block-vertex <i>j</i>.

Connectivity	Generalized inverse
 All row-sums of <i>L</i> and of <i>L̃</i> are zero, so both matrices have 0 as eigenvalue on the appropriate all-1 vector. Theorem The following are equivalent. 0 is a simple eigenvalue of <i>L</i>; G is a connected graph; G̃ is a connected graph; 0 is a simple eigenvalue of <i>L̃</i>; the design Δ is connected in the sense that all differences between treatments can be estimated. From now on, assume connectivity. Call the remaining eigenvalues <i>non-trivial</i>. They are all non-negative. 	Under the assumption of connectivity, the Moore–Penrose generalized inverse L^- of L is defined by $L^- = \left(L + \frac{1}{v}J_v\right)^{-1} - \frac{1}{v}J_v$, where J_v is the $v \times v$ all-1 matrix. (The matrix $\frac{1}{v}J_v$ is the orthogonal projector onto the null space of L .) The Moore–Penrose generalized inverse \tilde{L}^- of \tilde{L} is defined similarly.

We measure the response Y_{ω} on each experimenal unit ω . If experimental unit ω has treatment <i>i</i> and is in block <i>m</i> $(f(\omega) = i \text{ and } g(\omega) = m)$, then we assume that $Y_{\omega} = \tau_i + \beta_m + \text{random noise.}$ We want to estimate contrasts $\sum_i x_i \tau_i$ with $\sum_i x_i = 0$. In particular, we want to estimate all the simple differences $\tau_i - \tau_j$. Theorem (Standard linear model theory) Assume that all the noise is independent, with variance σ^2 . If $\sum_i x_i = 0$, then the variance of the best linear unbiased estimator of $\sum_i x_i \tau_i$ is equal to $(x^\top L^- x)k\sigma^2$. In particular, we want to estimate all the simple differences $\tau_i - \tau_j$. $V_{ij} = (L_{ii} + L_{jj} - 2L_{ij})k\sigma^2$.	Estimation and variance	How do we calculate variance?
Put V_{ij} = variance of the best linear unbiased estimator for $\tau_i - \tau_j$. We want all the V_{ii} to be small.	We measure the response Y_{ω} on each experimenal unit ω . If experimental unit ω has treatment <i>i</i> and is in block <i>m</i> $(f(\omega) = i \text{ and } g(\omega) = m)$, then we assume that $Y_{\omega} = \tau_i + \beta_m + \text{random noise.}$ We want to estimate contrasts $\sum_i x_i \tau_i$ with $\sum_i x_i = 0$. In particular, we want to estimate all the simple differences $\tau_i - \tau_j$. Put V_{ij} = variance of the best linear unbiased estimator for $\tau_i - \tau_j$. We want all the V_{ij} to be small.	Theorem (Standard linear model theory) Assume that all the noise is independent, with variance σ^2 . If $\sum_i x_i = 0$, then the variance of the best linear unbiased estimator of $\sum_i x_i \tau_i$ is equal to $(x^\top L^- x)k\sigma^2$. In particular, the variance of the best linear unbiased estimator of the simple difference $\tau_i - \tau_j$ is $V_{ij} = \left(L_{ii}^- + L_{jj}^ 2L_{ij}^-\right)k\sigma^2$.

25/44

26/44

Theorem Theorem The variance of the best linear unbiased estimator of the simple difference $\tau_i - \tau_j$ is $V_{ij} = (\tilde{L}_{ii}^- + \tilde{L}_{jj}^ 2\tilde{L}_{ij}^-) \sigma^2$. We can consider the concurrence graph <i>G</i> as an electrical network with a 1-ohm resistance in each edge. Connect a 1-volt battery between vertices <i>i</i> and <i>j</i> . Current flows in the network, according to these rules. 1. Ohm's Law: In every edge, voltage drop = current × resistance = current. 2. Kirchhoff's Voltage Law: The total voltage drop from one vertex to any other vertex is the same no matter which path we take from one to the other. 3. Kirchhoff's Current Law: At every vertex which is not connected to the battery, the total current orming in is equal to the total current going out. Find the total current <i>I</i> from <i>i</i> to <i>j</i> , then use Ohm's Law to define the effective resistance R_{ij} between <i>i</i> and <i>j</i> as 1/ <i>I</i> .	Or we can use the Levi graph	Electrical networks
	Theorem The variance of the best linear unbiased estimator of the simple difference $\tau_i - \tau_j$ is $V_{ij} = \left(\tilde{L}_{ii} + \tilde{L}_{jj} - 2\tilde{L}_{ij}\right)\sigma^2$.	 We can consider the concurrence graph <i>G</i> as an electrical network with a 1-ohm resistance in each edge. Connect a 1-volt battery between vertices <i>i</i> and <i>j</i>. Current flows in the network, according to these rules. 1. Ohm's Law: In every edge, voltage drop = current × resistance = current. 2. Kirchhoff's Voltage Law: The total voltage drop from one vertex to any other vertex is the same no matter which path we take from one to the other. 3. Kirchhoff's Current Law: At every vertex which is not connected to the battery, the total current coming in is equal to the total current going out. Find the total current <i>I</i> from <i>i</i> to <i>j</i>, then use Ohm's Law to define the effective resistance <i>R_{ij}</i> between <i>i</i> and <i>j</i> as 1/<i>I</i>.

Average pairwise variance	Optimality
The variance of the best linear unbiased estimator of the simple difference $\tau_i - \tau_j$ is $V_{ij} = \left(L_{ii}^- + L_{jj}^ 2L_{ij}^-\right)k\sigma^2.$ Put \bar{V} = average value of the V_{ij} . Then $\bar{V} = \frac{2k\sigma^2 \operatorname{Tr}(L^-)}{v-1} = 2k\sigma^2 \times \frac{1}{\operatorname{harmonic mean of } \theta_1, \dots, \theta_{v-1}},$ where $\theta_1, \dots, \theta_{v-1}$ are the nontrivial eigenvalues of L .	 The design is called A-optimal if it minimizes the average of the variances V_{ij}; -equivalently, it maximizes the harmonic mean of the non-trivial eigenvalues of the Laplacian matrix L; D-optimal if it minimizes the volume of the confidence ellipsoid for (τ₁,, τ_v); -equivalently, it maximizes the geometric mean of the non-trivial eigenvalues of the Laplacian matrix L; over all block designs with block size k and the given v and b.

D-optimality: spanning trees	What about the Levi graph?
A spanning tree for the graph is a collection of edges of the	Theorem (Gaffke)
graph which form a tree (connected graph with no cycles)	Let G and \tilde{G} be the concurrence graph and Levi graph for a connected
and which include every vertex.	incomplete-block design for v treatments in b blocks of size k .
Cheng (1981), after Gaffke (1978), after Kirchhoff (1847):	Then the number of spanning trees for \tilde{G} is equal to
product of non-trivial eigenvalues of L	k^{b-v+1} times the number of spanning trees for G.
= $v \times$ number of spanning trees.	So a block design is D-optimal if and only if
So a design is D-optimal if and only if its concurrence graph G	its Levi graph maximizes the number of spanning trees.
has the maximal number of spanning trees.	If $v > b$ it is easier to count spanning trees in the Levi graph
This is easy to calculate by hand when the graph is sparse.	than in the concurrence graph.

Consequence
If <i>n</i> or <i>b</i> is large, and we want an A-optimal design, it may be best to make Γ a complete block design for <i>k</i> ' controls, even if there is no interest in comparisons between new treatments and controls, or between controls.

