
Graphs from block designs: concurrence,
distance, variance and electrical resistance

R. A. Bailey

r.a.bailey@qmul.ac.uk

Combinatorics 2008



What is a block design?

The phrase block design means slightly different things to
combinatorialists and statisticians.

A combinatorialist thinks of sets
of objects called points and blocks, together with some incidence
relation between them. Someone designing an experiment starts with
a set of experimental units and a set of treatments. Each experimental
unit can have exactly one treatment applied to it, and the purpose of
the experiment is to compare the treatments. Unfortunately, the
experimental units already have an inherent partition into blocks, and
units in different blocks may behave differently. So the statistician’s
job is to decide which treatments should be allocated to units in which
blocks.

I The combinatorialist’s points are the statistician’s treatments.
I Blocks are more-or-less the same to both, except that the

statistician can allow a treatment to occur on more than one unit
in a block.

I With this proviso, the statistician’s experimental units are the
combinatorialist’s flags.



What is a block design?

The phrase block design means slightly different things to
combinatorialists and statisticians. A combinatorialist thinks of sets
of objects called points and blocks, together with some incidence
relation between them.

Someone designing an experiment starts with
a set of experimental units and a set of treatments. Each experimental
unit can have exactly one treatment applied to it, and the purpose of
the experiment is to compare the treatments. Unfortunately, the
experimental units already have an inherent partition into blocks, and
units in different blocks may behave differently. So the statistician’s
job is to decide which treatments should be allocated to units in which
blocks.

I The combinatorialist’s points are the statistician’s treatments.
I Blocks are more-or-less the same to both, except that the

statistician can allow a treatment to occur on more than one unit
in a block.

I With this proviso, the statistician’s experimental units are the
combinatorialist’s flags.



What is a block design?

The phrase block design means slightly different things to
combinatorialists and statisticians. A combinatorialist thinks of sets
of objects called points and blocks, together with some incidence
relation between them. Someone designing an experiment starts with
a set of experimental units and a set of treatments.

Each experimental
unit can have exactly one treatment applied to it, and the purpose of
the experiment is to compare the treatments. Unfortunately, the
experimental units already have an inherent partition into blocks, and
units in different blocks may behave differently. So the statistician’s
job is to decide which treatments should be allocated to units in which
blocks.

I The combinatorialist’s points are the statistician’s treatments.
I Blocks are more-or-less the same to both, except that the

statistician can allow a treatment to occur on more than one unit
in a block.

I With this proviso, the statistician’s experimental units are the
combinatorialist’s flags.



What is a block design?

The phrase block design means slightly different things to
combinatorialists and statisticians. A combinatorialist thinks of sets
of objects called points and blocks, together with some incidence
relation between them. Someone designing an experiment starts with
a set of experimental units and a set of treatments. Each experimental
unit can have exactly one treatment applied to it, and the purpose of
the experiment is to compare the treatments. Unfortunately, the
experimental units already have an inherent partition into blocks, and
units in different blocks may behave differently. So the statistician’s
job is to decide which treatments should be allocated to units in which
blocks.

I The combinatorialist’s points are the statistician’s treatments.
I Blocks are more-or-less the same to both, except that the

statistician can allow a treatment to occur on more than one unit
in a block.

I With this proviso, the statistician’s experimental units are the
combinatorialist’s flags.



What is a block design?

The phrase block design means slightly different things to
combinatorialists and statisticians. A combinatorialist thinks of sets
of objects called points and blocks, together with some incidence
relation between them. Someone designing an experiment starts with
a set of experimental units and a set of treatments. Each experimental
unit can have exactly one treatment applied to it, and the purpose of
the experiment is to compare the treatments. Unfortunately, the
experimental units already have an inherent partition into blocks, and
units in different blocks may behave differently. So the statistician’s
job is to decide which treatments should be allocated to units in which
blocks.

I The combinatorialist’s points are the statistician’s treatments.

I Blocks are more-or-less the same to both, except that the
statistician can allow a treatment to occur on more than one unit
in a block.

I With this proviso, the statistician’s experimental units are the
combinatorialist’s flags.



What is a block design?

The phrase block design means slightly different things to
combinatorialists and statisticians. A combinatorialist thinks of sets
of objects called points and blocks, together with some incidence
relation between them. Someone designing an experiment starts with
a set of experimental units and a set of treatments. Each experimental
unit can have exactly one treatment applied to it, and the purpose of
the experiment is to compare the treatments. Unfortunately, the
experimental units already have an inherent partition into blocks, and
units in different blocks may behave differently. So the statistician’s
job is to decide which treatments should be allocated to units in which
blocks.

I The combinatorialist’s points are the statistician’s treatments.
I Blocks are more-or-less the same to both, except that the

statistician can allow a treatment to occur on more than one unit
in a block.

I With this proviso, the statistician’s experimental units are the
combinatorialist’s flags.



What is a block design?

The phrase block design means slightly different things to
combinatorialists and statisticians. A combinatorialist thinks of sets
of objects called points and blocks, together with some incidence
relation between them. Someone designing an experiment starts with
a set of experimental units and a set of treatments. Each experimental
unit can have exactly one treatment applied to it, and the purpose of
the experiment is to compare the treatments. Unfortunately, the
experimental units already have an inherent partition into blocks, and
units in different blocks may behave differently. So the statistician’s
job is to decide which treatments should be allocated to units in which
blocks.

I The combinatorialist’s points are the statistician’s treatments.
I Blocks are more-or-less the same to both, except that the

statistician can allow a treatment to occur on more than one unit
in a block.

I With this proviso, the statistician’s experimental units are the
combinatorialist’s flags.



Microarray experiments

The last decade has seen a huge number of microarray experiments
performed in genomics.

If we ignore some complications,
the designs for these experiments are just block designs with block
size two,
so they can also be regarded as graphs, possibly with multiple edges.

v treatments −→ v vertices
b blocks −→ b edges
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Biologists versus mathematicians: Designs for 6 treatments
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What makes a design good?

1. We need the variance between each pair of treatments to be small
(coming up next).

2. We need to optimize a single summary measure
(coming up later).

3. We want it to remain good if we lose a few observations
(even later).
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Estimation and variance

mmi j

Y Zresponse

treatment block e

Assume that Y = τi +βe +noise

Z = τj +βe +other noise

Then Y−Z is an estimator for τi− τj with variance 2.

Note that if there is another block containing i and j, then it has two
further responses, whose difference gives another estimator for τi− τj,

which may be different.

Put Vij = variance of the estimator for τi− τj using the whole graph.

We want all the Vij to be small.
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Variance: series

mm mi k j
P Q

In our block design,

P = estimator for τi− τk with variance d

Q = estimator for τk− τj with variance e

P+Q = estimator for τi− τj with variance d + e

In an electrical network,

resistance in network P between i and k is d

resistance in network Q between k and j is e

resistance in network ‘P in series with Q’ between i and j is d + e



Variance: series

mm mi k j
P Q

In our block design,

P = estimator for τi− τk with variance d

Q = estimator for τk− τj with variance e

P+Q = estimator for τi− τj with variance d + e

In an electrical network,

resistance in network P between i and k is d

resistance in network Q between k and j is e

resistance in network ‘P in series with Q’ between i and j is d + e



Variance: series

mm mi k j
P Q

In our block design,

P = estimator for τi− τk with variance d

Q = estimator for τk− τj with variance e

P+Q = estimator for τi− τj with variance d + e

In an electrical network,

resistance in network P between i and k is d

resistance in network Q between k and j is e

resistance in network ‘P in series with Q’ between i and j is d + e



Variance: series

mm mi k j
P Q

In our block design,

P = estimator for τi− τk with variance d

Q = estimator for τk− τj with variance e

P+Q = estimator for τi− τj with variance d + e

In an electrical network,

resistance in network P between i and k is d

resistance in network Q between k and j is e

resistance in network ‘P in series with Q’ between i and j is d + e



Variance: series

mm mi k j
P Q

In our block design,

P = estimator for τi− τk with variance d

Q = estimator for τk− τj with variance e

P+Q = estimator for τi− τj with variance d + e

In an electrical network,

resistance in network P between i and k is d

resistance in network Q between k and j is e

resistance in network ‘P in series with Q’ between i and j is d + e



Variance: parallel

m mi j

P

Q

In our block design,

P = estimator for τi− τj with variance d

Q = estimator for τi− τj with variance e
eP+dQ

d + e
= best estimator for τi− τj with variance

1
1
d + 1

e

In an electrical network,

resistance in network P between i and j is d

resistance in network Q between i and j is e

resistance in network ‘P in parallel with Q’ between i and j is
1

1
d + 1

e



Variance: parallel

m mi j

P

QIn our block design,

P = estimator for τi− τj with variance d

Q = estimator for τi− τj with variance e

eP+dQ
d + e

= best estimator for τi− τj with variance
1

1
d + 1

e

In an electrical network,

resistance in network P between i and j is d

resistance in network Q between i and j is e

resistance in network ‘P in parallel with Q’ between i and j is
1

1
d + 1

e



Variance: parallel

m mi j

P

QIn our block design,

P = estimator for τi− τj with variance d

Q = estimator for τi− τj with variance e
eP+dQ

d + e
= best estimator for τi− τj with variance

1
1
d + 1

e

In an electrical network,

resistance in network P between i and j is d

resistance in network Q between i and j is e

resistance in network ‘P in parallel with Q’ between i and j is
1

1
d + 1

e



Variance: parallel

m mi j

P

QIn our block design,

P = estimator for τi− τj with variance d

Q = estimator for τi− τj with variance e
eP+dQ

d + e
= best estimator for τi− τj with variance

1
1
d + 1

e

In an electrical network,

resistance in network P between i and j is d

resistance in network Q between i and j is e

resistance in network ‘P in parallel with Q’ between i and j is
1

1
d + 1

e



Variance: parallel

m mi j

P

QIn our block design,

P = estimator for τi− τj with variance d

Q = estimator for τi− τj with variance e
eP+dQ

d + e
= best estimator for τi− τj with variance

1
1
d + 1

e

In an electrical network,

resistance in network P between i and j is d

resistance in network Q between i and j is e

resistance in network ‘P in parallel with Q’ between i and j is
1

1
d + 1

e



Eureka!

Variance is the same as resistance!

(if the block size is 2)

Block design −→ (multi-)graph

−→ electrical network with resistance 2 in each edge



How do we calculate variance? I

Put A = adjacency matrix of the graph
(so aij = number of blocks containing i and j if i 6= j);

and R = diagonal matrix of replications
(so rii = valency of vertex i).

The information matrix is L = R− (A+R)/2 = Laplacian matrix÷2.

It has a “trivial” eigenvalue 0, corresponding to the all-1 eigenvector.

Put L− = generalized inverse of L
= inverse of L on vectors orthogonal to all-1 vector.

Theorem

Vij =
(

L−ii +L−jj −2L−ij
)

.
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How do we calculate variance? II

How do we calculate L− from L?

Engineers Delete the last row and column, then invert.

Algebraists Express L in spectral form as ∑ µiPi,
where µi are the nonzero eigenvalues with
corresponding eigenprojectors Pi,
then L− = ∑ µ

−1
i Pi.

Feasible if the eigenvectors are “nice” and there are few
distinct eigenvalues.

Computer If J is the all-1 matrix then v−1J is the identity matrix
for the all-1 vector and zero on vectors orthogonal to it,
so L+ v−1J is invertible and
L−1 = (L+ v−1J)−1− v−1J.

No good for general formulae.



How do we calculate variance? II

How do we calculate L− from L?

Engineers Delete the last row and column, then invert.

Algebraists Express L in spectral form as ∑ µiPi,
where µi are the nonzero eigenvalues with
corresponding eigenprojectors Pi,
then L− = ∑ µ

−1
i Pi.

Feasible if the eigenvectors are “nice” and there are few
distinct eigenvalues.

Computer If J is the all-1 matrix then v−1J is the identity matrix
for the all-1 vector and zero on vectors orthogonal to it,
so L+ v−1J is invertible and
L−1 = (L+ v−1J)−1− v−1J.

No good for general formulae.



How do we calculate variance? II

How do we calculate L− from L?

Engineers Delete the last row and column, then invert.

Algebraists Express L in spectral form as ∑ µiPi,
where µi are the nonzero eigenvalues with
corresponding eigenprojectors Pi,
then L− = ∑ µ

−1
i Pi.

Feasible if the eigenvectors are “nice” and there are few
distinct eigenvalues.

Computer If J is the all-1 matrix then v−1J is the identity matrix
for the all-1 vector and zero on vectors orthogonal to it,
so L+ v−1J is invertible and
L−1 = (L+ v−1J)−1− v−1J.

No good for general formulae.



How do we calculate variance? II

How do we calculate L− from L?

Engineers Delete the last row and column, then invert.

Algebraists Express L in spectral form as ∑ µiPi,
where µi are the nonzero eigenvalues with
corresponding eigenprojectors Pi,
then L− = ∑ µ

−1
i Pi.

Feasible if the eigenvectors are “nice” and there are few
distinct eigenvalues.

Computer If J is the all-1 matrix then v−1J is the identity matrix
for the all-1 vector and zero on vectors orthogonal to it,
so L+ v−1J is invertible and
L−1 = (L+ v−1J)−1− v−1J.

No good for general formulae.



How do we calculate variance? II

How do we calculate L− from L?

Engineers Delete the last row and column, then invert.

Algebraists Express L in spectral form as ∑ µiPi,
where µi are the nonzero eigenvalues with
corresponding eigenprojectors Pi,
then L− = ∑ µ

−1
i Pi.

Feasible if the eigenvectors are “nice” and there are few
distinct eigenvalues.

Computer If J is the all-1 matrix then v−1J is the identity matrix
for the all-1 vector and zero on vectors orthogonal to it,
so L+ v−1J is invertible and
L−1 = (L+ v−1J)−1− v−1J.

No good for general formulae.



How do we calculate variance? II

How do we calculate L− from L?

Engineers Delete the last row and column, then invert.

Algebraists Express L in spectral form as ∑ µiPi,
where µi are the nonzero eigenvalues with
corresponding eigenprojectors Pi,
then L− = ∑ µ

−1
i Pi.

Feasible if the eigenvectors are “nice” and there are few
distinct eigenvalues.

Computer If J is the all-1 matrix then v−1J is the identity matrix
for the all-1 vector and zero on vectors orthogonal to it,
so L+ v−1J is invertible and
L−1 = (L+ v−1J)−1− v−1J.

No good for general formulae.



How do we calculate variance? II

How do we calculate L− from L?

Engineers Delete the last row and column, then invert.

Algebraists Express L in spectral form as ∑ µiPi,
where µi are the nonzero eigenvalues with
corresponding eigenprojectors Pi,
then L− = ∑ µ

−1
i Pi.

Feasible if the eigenvectors are “nice” and there are few
distinct eigenvalues.

Computer If J is the all-1 matrix then v−1J is the identity matrix
for the all-1 vector and zero on vectors orthogonal to it,
so L+ v−1J is invertible and
L−1 = (L+ v−1J)−1− v−1J.

No good for general formulae.



How do we calculate variance? II

How do we calculate L− from L?

Engineers Delete the last row and column, then invert.

Algebraists Express L in spectral form as ∑ µiPi,
where µi are the nonzero eigenvalues with
corresponding eigenprojectors Pi,
then L− = ∑ µ

−1
i Pi.

Feasible if the eigenvectors are “nice” and there are few
distinct eigenvalues.

Computer If J is the all-1 matrix then v−1J is the identity matrix
for the all-1 vector and zero on vectors orthogonal to it,
so L+ v−1J is invertible and
L−1 = (L+ v−1J)−1− v−1J.

No good for general formulae.



How do we calculate variance? III

Suppose that voltages of 1 and 0 are applied at vertices i and j.

Arbitrarily orient each edge,
and write a letter for the current in that edge in that direction.

By Ohm’s Law, voltage drop in edge e is 2× current in edge e.

By Kirchhoff’s Current Law, at each vertex other than i and j,
current in = current out.

By Kirchoff’s Voltage Law, around each circuit, the sum of the
(signed) currents is zero.

Calculate all the currents.
Then Vij is the reciprocal of the total current from i to j.

(Good for sparse graphs with many vertices of valency 2.)
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How do we calculate variance? IV

A spanning tree for the graph is a collection of edges of the graph
which form a tree and which include every vertex.

A spanning thicket for the graph is a collection of edges of the graph
which form a two trees (one of them may be an isolated vertex) and
which include every vertex.

Theorem

Vij = 2× number of spanning thickets with i, j in different parts
number of spanning trees
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Conjecture relating variance to distance

Conjecture

If the distance in the graph between vertices i and j is less than the
distance between k and l then Vij ≤ Vkl.
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. . . but that is a terrible block design!



Conjecture relating variance to distance

Conjecture

If the distance in the graph between vertices i and j is less than the
distance between k and l then Vij ≤ Vkl.

u
u

u
u u u u

u
u
u

�
�

�@
@

@�
��

H
HH

H
HH

���

�
�

�@
@

@

A

B

C

D

E F
G

H

I

J

pair AB AD CE EF CD BE . . . AI
distance 1 1 1 1 2 2 . . . 5
variance 1 1.08 1.33 2 1.33 1.75 . . . 3.5

. . . but that is a terrible block design!



Conjecture relating variance to distance

Conjecture

If the distance in the graph between vertices i and j is less than the
distance between k and l then Vij ≤ Vkl.

u
u

u
u u u u

u
u
u

�
�

�@
@

@�
��

H
HH

H
HH

���

�
�

�@
@

@

A

B

C

D

E F
G

H

I

J

pair AB AD CE EF CD BE . . . AI
distance 1 1 1 1 2 2 . . . 5
variance 1 1.08 1.33 2 1.33 1.75 . . . 3.5

. . . but that is a terrible block design!



Conjecture relating variance to distance

Conjecture

If the distance in the graph between vertices i and j is less than the
distance between k and l then Vij ≤ Vkl.

u
u

u
u u u u

u
u
u

�
�

�@
@

@�
��

H
HH

H
HH

���

�
�

�@
@

@

A

B

C

D

E F
G

H

I

J

pair AB AD CE EF CD BE . . . AI
distance 1 1 1 1 2 2 . . . 5
variance 1 1.08 1.33 2 1.33 1.75 . . . 3.5

. . . but that is a terrible block design!



Another design for 10 treatments in 15 blocks of size 2

The previous design had variances from 1 to 5.5, with average 3.05.
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The second design has Vij =
{

1.2 if ij is an edge
1.6 otherwise,

with average 1.47.

The second graph is strongly regular.
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Distance-regular graphs

A connected simple graph is distance-regular if its distance classes
form an association scheme.

That is, there are constants b1, c1, b2, c2,
. . . such that, if vertices i and j are at distance n,
then there are bn neighbours of j which are at distance n+1 from i
and there are cn neighbours of j which are at distance n−1 from i.

Theorem
If the blocks of a block design with block size 2 form the edges of a
distance-regular graph, then variance is a monotonic increasing
function of distance.

Proof use the fact that L− is in the Bose-Mesner algebra of the graph.
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Optimality

The design is called
I MV-optimal if it minimizes the maximum variance Vij;

I A-optimal if it minimizes the average of the variances Vij

—equivalently, it maximizes the harmonic mean of the
non-trivial eigenvalues of the information matrix L;

I D-optimal if it maximizes the geometric mean of the non-trivial
eigenvalues of the information matrix L;

—equivalently, it minimizes the volume of the confidence
ellipsoid for (τ1, . . . ,τv);

I E-optimal if it maximizes the minimum non-trivial eigenvalue
of L.

over all block designs with block size two and the given v and b.
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Some questions

Do these criteria agree with each other?

Do robust designs perform well on these criteria?

What features of the graph should we look for if we are searching for
optimal or near-optimal designs?

I Symmetry?
I Equal valencies?
I Distance-regularity?
I Small girth?
I Small numbers of short cycles?
I Non-trivial automorphism group?



Some questions

Do these criteria agree with each other?

Do robust designs perform well on these criteria?

What features of the graph should we look for if we are searching for
optimal or near-optimal designs?

I Symmetry?
I Equal valencies?
I Distance-regularity?
I Small girth?
I Small numbers of short cycles?
I Non-trivial automorphism group?



Some questions

Do these criteria agree with each other?

Do robust designs perform well on these criteria?

What features of the graph should we look for if we are searching for
optimal or near-optimal designs?

I Symmetry?

I Equal valencies?
I Distance-regularity?
I Small girth?
I Small numbers of short cycles?
I Non-trivial automorphism group?



Some questions

Do these criteria agree with each other?

Do robust designs perform well on these criteria?

What features of the graph should we look for if we are searching for
optimal or near-optimal designs?

I Symmetry?
I Equal valencies?

I Distance-regularity?
I Small girth?
I Small numbers of short cycles?
I Non-trivial automorphism group?



Some questions

Do these criteria agree with each other?

Do robust designs perform well on these criteria?

What features of the graph should we look for if we are searching for
optimal or near-optimal designs?

I Symmetry?
I Equal valencies?
I Distance-regularity?

I Small girth?
I Small numbers of short cycles?
I Non-trivial automorphism group?



Some questions

Do these criteria agree with each other?

Do robust designs perform well on these criteria?

What features of the graph should we look for if we are searching for
optimal or near-optimal designs?

I Symmetry?
I Equal valencies?
I Distance-regularity?
I Small girth?

I Small numbers of short cycles?
I Non-trivial automorphism group?



Some questions

Do these criteria agree with each other?

Do robust designs perform well on these criteria?

What features of the graph should we look for if we are searching for
optimal or near-optimal designs?

I Symmetry?
I Equal valencies?
I Distance-regularity?
I Small girth?
I Small numbers of short cycles?

I Non-trivial automorphism group?



Some questions

Do these criteria agree with each other?

Do robust designs perform well on these criteria?

What features of the graph should we look for if we are searching for
optimal or near-optimal designs?

I Symmetry?
I Equal valencies?
I Distance-regularity?
I Small girth?
I Small numbers of short cycles?
I Non-trivial automorphism group?



The D and A criteria for all regular graphs with 8 vertices
and valency 3
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Robustness: edge-connectivity 3, 2, 1 shown as ×, +, ◦ respectively.
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Some history: what happens when b = v?

Computer investigation by
I Jones and Eccleston (1980)
I Kerr and Churchill (2001)
I Wit, Nobile and Khanin (2005)
I Ceraudo (2006).



Optimal designs when b = v

v = 6 v = 7 v = 8

D-optimal r
rr

r
r r

.

........................................................................................................

......................................................................................................

.

........................................................................................................ .

...........
...........
...........
...........
...........
...........
...........
...........
...........
.....

......................................................................................................

.

...........
...........

...........
...........

...........
...........

...........
...........

...........
..... r

rrr
r r r

.

...........................................................................................

.
............................................................................................
.

...............
...............

...............
...............

...............
............

.

.........

.........

.........

.........

.........

.........

.........

.........

.........

......

.

.......................................................................................
.

..........................................
..........................................

........

.

...........
...........
...........
...........
...........
...........
...........
...........
... r

rrr
r

r r r
.

.................................................................................

.

.................................................................................

.

.................................................................................

.

.................................................................................

.

...........
...........
...........
...........
...........
...........
...........
....

.

.........................
.........................

.........................
......

.

...........
...........

...........
...........

...........
...........

...........
....

.

.........................
.........................

.........................
......

A-optimal r
rr

r
r r

.

........................................................................................................

......................................................................................................

.

........................................................................................................ .

...........
...........
...........
...........
...........
...........
...........
...........
...........
.....

......................................................................................................

.

...........
...........

...........
...........

...........
...........

...........
...........

...........
..... r

rrr
r r r

.

...........................................................................................

.
............................................................................................
.

...............
...............

...............
...............

...............
............

.

.........

.........

.........

.........

.........

.........

.........

.........

.........

......

.

.......................................................................................
.

..........................................
..........................................

........

.

...........
...........
...........
...........
...........
...........
...........
...........
... r

rrr
r

r r r
.

.................................................................................

.

.................................................................................

.

.................................................................................

.

.................................................................................

.

...........
...........
...........
...........
...........
...........
...........
....

.

.........................
.........................

.........................
......

.

...........
...........

...........
...........

...........
...........

...........
....

.

.........................
.........................

.........................
......



Optimal designs when b = v
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D-optimality

Cheng (1978), after Gaffke (1978), after Kirchhoff (1847):

product of non-trivial eigenvalues of L =
v×number of spanning trees

2v−1

number of spanning trees =
number of ways of removing b− v+1 edges without disconnecting
the graph, (which is easy to calculate by hand when b− v is small)
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10 spanning trees 4 spanning trees

The loop design is uniquely D-optimal when b = v.
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Results about A-optimality

Theorem (Thanks to Emil Vaughan)

∑
i<j

Vij = 2×
∑

thickets F
|F1| |F2|

number of spanning trees

Theorem
If an A-optimal design has leaves (vertices of valency 1),
then they are all attached to the same vertex.

Theorem
The A-optimal design with b = v is

I the loop design (single circuit) if v≤ 8;
I a star glued to a quadrilateral if 9≤ v≤ 11;
I a star glued to a quadrilateral or a triangle if v = 12;
I a star glued to a triangle if v≥ 13.
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What happens when b = v+1?

Theorem
The A-optimal design with v treatments (vertices) and v+1 blocks
(edges) is

I Three parallel paths of (almost) equal length, if v≤ 11;

I three shorter parallel paths, with leaves attached at one end, if
12≤ v≤ 14;

I if v≥ 15, leaves attached to one end of u
u
u
u
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Threshold

Bad news theorem
Given any fixed value of b− v, there is a threshold T such that when
v≥ T the A- and D-optimality criteria conflict.

Fix b− v = c.

Average valency =
2b
v

=
2(v+ c)

v
= 2+

2c
v

< 3 for large v.

For large v, our graph G consists of
I a graph G0 with all valencies at least 3;
I some vertices (valency 2) inserted into edges of G0;
I some leaves (valency 1) attached to one (or more) vertices of G0.

D-optimal designs do not have leaves.
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1. Average
i∈P

Vij ≥
1
2
(V1j +V2j) for all j in G\P.

2. Average
all i, j

Vij ≥ Average
i, j∈G0

Vij

3. Inserting n−1 vertices into all edges of G0
multiplies all original variances by n.

4. Large enough v =⇒ large enough n =⇒ Average
all i, j

Vij ≥ 4.

5. In the star K1,v−1, we have Average
all i, j

Vij =
4(v−1)

v
≤ 4.
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Another conjecture

Conjecture

Given any fixed value of b/v, there is a threshold T such that when
v≥ T the A- and D-optimality criteria conflict.

Fix b/v = c. In a regular graph with valency 2c, many(?) variances
will probably(?) increase unboundedly as v increases.

In cK1,v, all the variances are 2/c or 4/c.

There are probably(?) more spanning trees in regular graphs than in
multi-stars.
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Block designs with blocks of larger size: I

Suppose that every block has size k.

If i 6= j, the concurrence aij of i and j is the number of blocks
containing i and j.

The matrix A is the adjacency matrix of a (multi-)graph: the
concurrence graph.

Let di be the valency of vertex i, and D the diagonal matrix of
valencies.

If treatment i never occurs more than once in any block, the
concurrence of i with itself is its replication ri, so the concurrence
matrix is R+A, where R is the diagonal matrix of replications.

The information matrix is L = R− (R+A)/k.

But di = ∑j aij = ri(k−1), so D = (k−1)R and

L = R− (R+A)
k

=
(k−1)R−A

k
=

D−A
k

=
Laplacian matrix

k
.
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Block designs with blocks of larger size: II

So long as all the blocks have the same size, all information about
variance and optimality is deducible from (the Laplacian matrix of)
the concurrence graph.

Of course, if the block size is > 2, not all
graphs are realisable as block designs.

Theorem
If the concurrence graph is a multiple of the complete graph Kv,
then the design is optimal on all criteria.
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Block designs with blocks of larger size: III

I Does variance increase as concurrence decreases?

I No, in general.
I Yes, if the concurrence classes form an amorphic association

scheme
(in particular, a strongly regular graph).

I If the graph is λKv + µG for some simple graph G
(where µ > 0), does variance increase with distance in G?

I No, in general.
I Yes, if G is distance-regular.

I If G is better than H, is λKv +G better than λKv +H?
I Do the answers to the above questions change if we restrict to

graphs that are ‘near-optimal’?
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