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NOT experiments to determine the exact value of g

BUT experiments to find out if A is better than B,
and, if so, by how much.



Design of Comparative Experiments: Meaning?

NOT experiments to determine the exact value of g

BUT experiments to find out if A is better than B,
and, if so, by how much.



Philosophy

The aim is to develop a coherent framework for thinking about the
design and analysis of experiments

BUT you cannot build a general theory until the reader has some pegs
to hang it on.



Philosophy

The aim is to develop a coherent framework for thinking about the
design and analysis of experiments

BUT you cannot build a general theory until the reader has some pegs
to hang it on.



Outline

Chapter 1 Forward Look
Show the reader that we are going to cover real experiments.
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Confounded and fractional factorial designs
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Putting it all together—

reflections that need most of the foregoing
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Chapter 1 Forward Look

1. Stages in a statistically designed experiment—
consultation, design, data collection, data scrutiny, analysis,
interpretation

2. The ideal and the reality—
purpose, replication, local control, constraints, choice

3. An example—
coming up soon!

4. Defining terms

I An experimental unit is the smallest unit to which a treatment can
be applied.

I A treatment is the entire description of what can be applied to an
experimental unit.

I An observational unit is the smallest unit on which a response
will be measured.

5. Linear model
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Calf-feeding experiment

Calves were housed in pens, with ten calves per pen. Each pen was
allocated to a certain type of feed. Batches of this type of feed were
put into the pen; calves were free to eat as much of this as they liked.
Calves were weighed individually.

10 calves 10 calves 10 calves 10 calves
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Pen 1 Pen 2 Pen 3 Pen 4

Pen 5 Pen 6 Pen 7 Pen 8

Feed D Feed C Feed D Feed B

Feed B Feed A Feed A Feed C

treatment = type of feed experimental unit = pen
observational unit = calf
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Running example

0 160 240 160 80 0

160 80 80 0 160 80

80 0 160 240 0 240

240 240 0 80 240 160

↑ ↑ ↑ ↑ ↑ ↑
Cropper Melba Melle Melba Cropper Melle

experimental unit = observational unit = plot
treatment = combination of cultivar and amount of fertilizer
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Treatments in the running example

Treatments are all
combinations of:

factor levels
Cultivar (C) Cropper, Melle, Melba
Fertilizer (F) 0, 80, 160, 240 kg/ha

How many treatments are there?

Cultivar Fertilizer
0 80 160 240

Cropper √ √ √ √

Melle √ √ √ √

Melba √ √ √ √
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Treatments in another example

Treatments are all
combinations of:

factor levels
Timing (T) early, late
Fertilizer (F) 0, 80, 160, 240 kg/ha

How many treatments are there?

Timing Fertilizer
0 80 160 240

None √

Early √ √ √

Late √ √ √
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Chapter 2 Unstructured Experiments

Absolute basics.
First, some notation.

ω = plot = observational unit

T(ω) = treatment on plot ω

Yω = response on plot ω

E(Yω) = τT(ω)

So if ω is the third plot with treatment 2 then E(Yω) = τ2.

Calling this response Y23

I ignores the plots;
I encourages non-blindness;
I encourages operation by treatment instead of by inherent factors.
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I Completely randomized designs
I Why and how to randomize



Why and how to randomize

Why do we randomize? It is to avoid
I systematic bias (for example, doing all the tests on treatment A

in January then all the tests on treatment B in March)

I selection bias (for example, choosing the most healthy patients
for the treatment that you are trying to prove is best)

I accidental bias (for example, using the first rats that the animal
handler takes out of the cage for one treatment and the last rats
for the other)

I cheating by the experimenter:

I an experimenter may decide to give the extra milk rations to those
schoolchildren who are most undernourished

I presenting the experimenter with the randomized plan may force
her to tell you something which she had previously thought
unnecessary, such as ‘We cannot do it that way because . . . ’

How do we randomize? Write down a systematic plan. Then choose a
random permutation (from a computer, or shuffle a pack of cards) and
apply it to the systematic plan.
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Chapter 2 Unstructured Experiments

I Completely randomized designs
I Why and how to randomize

I The treatment subspace, Orthogonal projection,
I Linear model, Estimation, Matrix notation
I Sums of squares, Variance
I Replication: equal or unequal
I Allowing for the overall mean, Hypothesis testing

Source SS df MS VR
mean 107161.3513 1 107161.3513 13147.39
diets 117.8964 2 58.9482 7.23

residual 236.3723 29 8.1508 −
Total 107515.62 32

Fitting the grand mean as a submodel of the treatment space is a first
taste of what we shall do many times with structured treatments:
fit submodels and see what is left over.
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Replication for power (two treatments)
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Solid curve defines the interval [−a,a] used for the hypothesis test;
dashed curve gives the probability density function of the
test statistic ∆/

√
νΓ if the real difference is δ ;

∆ = estimate of δ ; Γ = estimate of variance per response;
ν = sum of reciprocals of replications.



Chapter 3 Simple Treatment Structures

I Replication of control treatments

I Comparing new treatments in the presence of a control
I Other treatment groupings

Repeated splitting of groupings, obtaining nested submodels
without the complication of understanding interaction.
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Drugs at different stages of development

A pharmaceutical company wants to compare 6 treatments for a
certain disease. There are are 3 different doses of formulation A, that
has been under development for some time, and 3 different doses (not
comparable with the previous 3) of a new formulation B, that has not
been so extensively studied.

zero

null model

response depends only on formulation

all doses of A give same responseall doses of B give same response

response depends on treatment
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Chapter 4 Blocking

I Types of block

I Natural discrete divisions—
do block, but block size may be less than the number of
treatments

I Continuous gradients—
do block, but choice of block boundary is somewhat arbitrary, so
block size can be chosen

I Blocking for trial management—
different technicians or different harvest times should be matched
to other blocking if possible, otherwise used as new blocks

I Orthogonal block designs—treatment i occurs ni times in every
block

I Models for block designs—block effects may be fixed or random
I Analysis when blocks have fixed effects
I Analysis when blocks have random effects
I Why use blocks?
I Loss of power with blocking
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Chapter 5 Factorial Treatment Structure

Twelve treatments are all
combinations of:

factor levels
Cultivar (C) Cropper, Melle, Melba
Fertilizer (F) 0, 80, 160, 240 kg/ha

E(Yω) = τC(ω),F(ω)

E(Yω) = λC(ω) + µF(ω)

E(Yω) = λC(ω) E(Yω) = µF(ω)

E(Yω) = κ

E(Yω) = 0
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←Interaction

Most books give a single
model which has these six
models as special cases
but which also specializes to
some inappropriate models,
which your software may let
you fit.
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Analysis of data (from factorial experiments)

1. Starting at the top of the model diagram, choose the smallest
model that fits the data adequately.

2. Estimate the parameters of the chosen model.

3. There is no need to parametrize the other models.

4. Orthogonality ⇒ different routes down the model diagram give
consistent results.
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Chapter 5 Factorial Treatment Structure

I . . .
I Three (or more) treatment factors
I Factorial experiments (benefits)
I Construction and randomization of factorial designs
I Factorial treatments plus control



Chapter 6 Row-Column Designs

Double blocking.
Wine-tasting example: treatments are 4 wines

Judge
Tasting 1 2 3 4 5 6 7 8

1

A B C D C D A B

2

D A B C D C B A

3

C D A B A B C D

4

B C D A B A D C
a Latin square and another

Randomize the (order of) the 4 rows
Randomize the (order of) the 8 columns
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Chapter 7 Experiments on People and Animals

I Applications of previous ideas

I A crossover trial with no carry-over effects is a row-column
design.

I A trial using matched pairs for a new drug and placebo is a block
design.

I Treatment centres may be regarded as blocks.
I Many designs are completely randomized.

I Issues peculiar to such experiments

I Need for placebo
I Sequential randomization to an unknown number of patients
I Ethical issues

I Best for this patient or best for the trial?

I Analysis by intention to treat

I One mouthwash is more effective at preventing gum disease than
another, but also more unpleasant, so some subjects may give up
taking it.
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Chapter 8 Small Units inside Large Units

10 calves 10 calves 10 calves 10 calves

10 calves 10 calves 10 calves 10 calves
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Feed D Feed C Feed D Feed B

Feed B Feed A Feed A Feed C

Stratum Source Degrees of freedom
mean mean 1
pens feed 3

residual 4

no matter how many calves per pen

total 7
calves calves 72
Total 80
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Modification

The 4 feeds consist of all combinations of
I 2 types of hay, which must be put in whole pens
I 2 types of anti-scour treatment, which are given to calves

individually.
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Treatment factors in different strata

Stratum Source Degrees of freedom
mean mean 1
pens hay 1

residual 6
total 7

calves anti-scour 1
hay ∧ anti-scour 1

residual 70
total 72

Total 80

Residual df for hay increase from 4 to 6, so power increases.
Anti-scour and the interaction have smaller variance (between calves
within pens rather than between pens) and substantially more residual
df, so power increases.
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(Classic) split-plot designs

Like the last one, but arrange the pens in complete blocks.



Chapter 9 More about Latin Squares

Using Latin squares for
I row-column designs
I two treatment factors with n levels each, in n blocks of size n,

if it can be assumed that there is no interaction
I three treatment factors with n levels each, in n2 experimental

units, if it can be assumed that there is no interaction



Chapter 10 The Calculus of Factors

A factor F is a function for which we are more interested in knowing
whether F(α) = F(β ) than in knowing the value F(α).

Let Ω = the set of observational units, and F a factor on Ω.
F-class containing α = F[[α]] = {ω ∈Ω : F(ω) = F(α)}.

F ≡ G (F is aliased with G) if every F-class is also a G-class.

F ≺ G (F is finer than G) if every F-class is contained in a G-class but
F 6≡ G.

F � G if F ≺ G or F ≡ G.

The universal factor U has just one class.

The equality factor E has one class per observational unit.
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Running example
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↑ ↑ ↑ ↑ ↑ ↑
Cropper Melba Melle Melba Cropper Melle

E = plot≺ strip≺ field≺ U
strip≺ cultivar
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Infimum of two factors

Given two factors F and G,
the factor F∧G is defined by

(F∧G)[[ω]] = F[[ω]]∩G[[ω]].
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Supremum of two factors

Given two factors F and G,
the factor F∨G is the finest factor whose classes are
unions of F-classes and unions of G-classes.

If you try to fit F and G in a linear model, you will get into trouble
unless you fit F∨G first.
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Hasse diagram for factors on the observational units
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Hasse diagram for factors on the treatments
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Chapter 10 The Calculus of Factors

Hence a complete theory for orthogonal designs,
including the location of treatment subspaces in the correct strata.

This covers everything so far,
and there are many further examples.



Chapter 11 Incomplete-Block Designs

Blocks are incomplete if
I the block size is less than the number of treatments
I no treatment occurs more than once in any block.

Balanced incomplete-block designs and square lattice designs.

Inserting a control treatment in every block.

If the number of blocks is equal to the number of treatments,
algorithm to arrange the blocks as the columns of a row-column
design in such a way that each treatment occurs once per row.

Combining the above.
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Chapter 12 Factorial Designs in Incomplete Blocks

Characters Treatments
A 0 0 0 1 1 1 2 2 2
B 0 1 2 0 1 2 0 1 2

A+B 0 1 2 1 2 0 2 0 1
A+2B 0 2 1 1 0 2 2 1 0
2A+B 0 1 2 2 0 1 1 2 0

2A+2B 0 2 1 2 1 0 1 0 2
2A 0 0 0 2 2 2 1 1 1
2B 0 2 1 0 2 1 0 2 1
I 0 0 0 0 0 0 0 0 0

A≡ 2A main effect of A
B≡ 2B main effect of B

A+B≡ 2A+2B 2 degrees of freedom for the A-by-B interaction
A+2B≡ 2A+B 2 degrees of freedom for the A-by-B interaction,

orthogonal to the previous 2

For 3 blocks of size 3, can alias blocks with any character.
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Chapter 13 Fractional Factorial Designs

A factorial design is a fractional replicate if not all possible
combinations of the treatment factors occur.

A fractional replicate can be useful if there are a large number of
treatment factors to investigate and we can assume that some
interactions are zero.

Chapter 9 constructed some fractional replicate designs from Latin
squares.

Here we use characters to give us more types of fractional replicate.

Includes quantile plots for analysis.



Chapter 14 Backward Look

1. Randomization

2. Factors such as time, sex, age and breed—
Are they treatment factors or plot factors?

3. Writing a protocol

4. . . .



Examples, Questions and Exercises

Not all the examples are agricultural.

Almost all of the examples in this book are real.
On the other hand, almost none of them is the whole truth.

Each chapter ends with questions for discussion:
there is no single correct answer.

There are more general exercises at the end.

Sources of all these are given, as far as possible.



A question from Chapter 1

Several studies have suggested that drinking red wine gives some
protection against heart disease, but it is not known whether the effect
is caused by the alcohol or by some other ingredient of red wine. To
investigate this, medical scientists enrolled 40 volunteers into a trial
lasting 28 days. For the first 14 days, half the volunteers drank two
glasses of red wine per day, while the other half had two standard
drinks of gin. For the remaining 14 days the drinks were reversed:
those who had been drinking red wine changed to gin, while those
who had been drinking gin changed to red wine. On days 14 and 28,
the scientists took a blood sample from each volunteer and measured
the amount of inflammatory substance in the blood.

Identify the experimental units and observational units. How many
are there of each? What is the plot structure?

What are the treatments? What is the treatment structure?



A question from Chapter 5

A group of people researching ways to reduce the risk of blood
clotting are planning their next experiments. One says:

We know that aspirin thins the blood. Let’s experiment with
the quantity of aspirin. We could enrol about 150 healthy
men into the trial, give 50 of them one aspirin tablet per day
for a year, another 50 one and a half aspirin tablets a day,
and the final 50 will get two aspirin tablets per day.
When we have decided which quantity is best, we can run
another trial to find out if there is any difference between
taking the aspirin after breakfast or after dinner.

How do you reply?



A question from Chapter 11

A horticulture research institute wants to compare nine methods of
treating a certain variety of houseplant while it is being grown in a
greenhouse in preparation for the Christmas market. One possibility
is to ask twelve small growers to test three treatments each in separate
chambers in their greenhouses. A second possibility is to ask three
large commercial growers to test nine methods each, also in separate
greenhouse chambers.

1. Construct a suitable design for the first possibility.

2. Randomize this design.

3. If the plots stratum variance is the same in both cases, which
design is more efficient?

4. Compare the designs in terms of likely cost, difficulty and
representativeness of the results.



The End

Thank you
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