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Abstract

The last decade has seen a huge number of microarray experiments
performed. If we ignore some complications, the designs for these
experiments are just block designs with block size two, so they can
also be regarded as graphs, possibly with multiple edges.
Statisticians usually rate block designs by (at least) two criteria.
When the block size is two, a design is D-optimal if it has the
maximum number of spanning trees, and it is A-optimal if it has the
minimum total of pairwise resistances when there is a unit resistance
on each edge (block). Experience with block designs in other
situations suggests that these two criteria agree closely at the top end.
However, microarray experiments are usually done with such a small
number b of blocks, relative to the number ¢ of treatments, that the
two criteria give opposite ranks.

I shall show that, if b is too small relative to ¢, this happens for all
sufficiently large .
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Estimation and variance

treatment

response Y VA
Assume that Y = T;+ B, +noise
Z = 1+ .+ other noise

Then Y — Z is an estimator for 7; — 7; with variance 1.
Put V;; = variance of the estimator for 7; — 7; using the whole graph.

We want all the Vj; to be small.
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Optimality

Put A = adjacency matrix of the graph

(so a;; = number of blocks containing i and j);

and R = diagonal matrix of replications

(so r;; = valency of vertex i).

The information matrix is L = R — (A + R) /2 = Laplacian matrix < 2.
It has a “trivial” eigenvalue 0, corresponding to the all-1 eigenvector.

The design is called

» A-optimal if it maximizes the harmonic mean of the non-trivial
eigenvalues;
—equivalently, it minimizes the average of the variances V;;

> D-optimal if it maximizes the geometric mean of the non-trivial

eigenvalues
—equivalently, it minimizes the volume of the confidence
ellipsoid for (7,...,7,)

over all block designs with block size two and the given v and b.



What happens when b =v?

Computer investigation by
» Jones and Eccleston (1980)
» Kerr and Churchill (2001)
» Wit, Nobile and Khanin (2005)
» Ceraudo (2005).
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D-optimality

Cheng (1978), after Gaftke (1978), after Kirchhoff (1847):

v X number of spanning trees

product of non-trivial eigenvalues of L = 1

number of spanning trees =
number of ways of removing b — v+ 1 edges without disconnecting
the graph, (which is easy to calculate by hand when b — v is small)

10 spanning trees 4 spanning trees

The loop design is uniquely D-optimal when b = v.
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In our block design,

P = estimator for 7; — 7; with variance d
Q = estimator for 7, — 7; with variance e
P+Q = estimator for 7; — 7; with variance d +e

In an electrical network,

resistance in network P betweeniand k is d
resistance in network Q between kandj is e

resistance in network ‘P in series with Q° betweeniandj is d-+e
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A-optimality: parallel

P
In our block design, Q
P = estimator for 7; — 7; with variance d
0 = estimator for 7; — 7; with variance e
eP+d ) . .
7Q = best estimator for 7; — 7; with variance ;
d+e

In an electrical network,

resistance in network P between i and j

resistance in network Q between i and j

resistance in network ‘P in parallel with O’ between i and j

d

is
is

is

1
e

U=

Q |—



Eurekal

Variance is the same as resistance!

Block design —  (multi-)graph

— electrical network with resistance 1 in each edge

Use Ohm’s Law and Kirchhoff’s Laws to calculate each variance V;;
algebraically.
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Results about A-optimality

Theorem
If an A-optimal design has leaves (vertices of valency 1),
then they are all attached to the same vertex.

Theorem
The A-optimal design with v treatments (vertices) and v blocks (edges)
is

v

the loop design (single circuit) if v < 8;

v

a star glued to a quadrilateral if 9 <v < 11;

v

a star glued to a quadrilateral or a triangle if v = 12;

v

a star glued to a triangle if v > 13.

Theorem
The A-optimal design with v treatments (vertices) and v+ 1 blocks
(edges) is . ..
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Threshold

Bad news theorem
Given any fixed value of b — v, there is a threshold T such that when

v > T the A- and D-optimality criteria conflict.

Fixb—v=c.

2b 2 2
Average valency = — = (v+c) =2+ = < 3 for large v.
v v v

For large v, our graph G consists of
» a graph G with all valencies at least 3;
» some vertices inserted into edges of Go;
» some leaves attached to one (or more) vertices of Gy.

D-optimal designs do not have leaves.
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Proof outline

@ . pathPfrom1to2

1
1. AverageV; > E(Vl‘/ +V,;) forall jin G\ P.
icP
2. AverageV;; > AverageV;;
all i, i, j€Go
3. Inserting n — 1 vertices into all edges of Gy
multiplies all original variances by n.

4. Large enough v = large enough n = AverageV;; > 2.
all i, j

20=1)

" =

5. In the star Ky ,_1, we have Average V;; =
all i, j



