QUEEN MARY, UNIVERSITY OF LONDON

MAS 108

Probability I

Solutions 7
Autumn 2005

Here is a possible solutions to Question 5 on Assignment 7.
(a) If half the full-time workforce is male and one quarter is female, what is the remaining quarter? The people who wrote this cannot add up.
(b) Choose a worker at random. Let $M=$ "male", $F=$ "female" and $T=$ "full-time". Then the Theorem of Total Probability gives

$$
\begin{aligned}
P(T) & =P(M) \times P(T \mid M)+P(F) \times P(T \mid F) \\
& =\frac{55}{100} \times \frac{91}{100}+\frac{45}{100} \times \frac{55}{100}=\frac{55 \times 136}{10000} .
\end{aligned}
$$

By Bayes' Theorem,

$$
P(M \mid T)=\frac{P(T \mid M) \times P(M)}{P(T)}=\frac{\frac{55}{100} \times \frac{91}{100}}{\frac{55 \times 136}{10000}}=\frac{91}{136}
$$

Then

$$
P(F \mid T)=1-P(M \mid T)=\frac{45}{136}
$$

In words, the proportion of the full-time workforce that is male is $91 / 136$ and the proportion that is female is $45 / 136$.
(c) They seem to have calculated

$$
P(T \cap M)=P(M) \times P(T \mid M)=\frac{55}{100} \times \frac{91}{100} \approx 0.5005
$$

and

$$
P(T \cap F)=P(F) \times P(T \mid F)=\frac{45}{100} \times \frac{55}{100} \approx 0.2475
$$

In words, half the workforce is full-time male and one quarter of the workforce is full-time female. This makes it clear that the missing quarter of the workforce consists of the parttime workers.

It seems that the authors confused $P(M \mid T)$ with $P(M \cap T)$.

