QUEEN MARY, UNIVERSITY OF LONDON

MAS 108

Probability I
Solutions 4
Autumn 2005

Here is one possible solution to Question 5 on Assignment 4.
(a) Sally's parents must both be $N C$ or $C N$. Let $S=$ "Sally has at least one C gene" and $T=$ "Sally does not have cystic fibrosis". Before Sally is born, $P(T)=1-P($ Sally is $C C)=3 / 4$ and $P(S \cap T)=P($ Sally is $N C$ or $C N)=1 / 2$. We know that T is true, so we are really being asked for the conditional probablity

$$
P(S \mid T)=\frac{P(S \cap T)}{P(T)}=\frac{2}{3}
$$

(b) Let $M=$ "Michael has at least one C gene" and $N=$ "Michael does not have cystic fibrosis". In the general population, the probability that each gene is C is $1 / 50$ and the probability that it is N is $49 / 50$. So if we knew nothing about Michael we would say that $P(M)=$ $1-\left(\frac{1}{50}\right)^{2}=\frac{49 \times 51}{2500}$ and $P(M \cap N)=2 \times \frac{49}{50} \times \frac{1}{50}=\frac{2 \times 49}{2500}$. Once again we are really being asked for the condtional probability

$$
P(M \mid N)=\frac{P(M \cap N)}{P(N)}=\frac{2}{51} .
$$

(c) Let $B=$ "child has cystic fibrosis". Then $B \subseteq S \cap M$. So

$$
\begin{aligned}
& P(B \mid T \cap N)=P(B \cap S \cap M \mid T \cap N)= \\
= & \frac{P(B \cap S \cap M \cap T \cap N)}{P(T \cap N)} \\
P(T \cap N) & \frac{1}{4} \frac{P(S \cap T) P(M \cap N)}{P(T) P(N)},
\end{aligned}
$$

because Sally and Michael inherit their genes independently,

$$
=\frac{1}{4} P(S \mid T) P(M \mid N)=\frac{1}{4} \times \frac{2}{3} \times \frac{2}{51}=\frac{1}{153} .
$$

