QUEEN MARY, UNIVERSITY OF LONDON

MAS 108

Probability I

Solutions 10
Autumn 2005

Here are possible solutions to Questions 1 and 2 on Assignment 10. If your method of solution is different it may still be correct. Come and ask me if you are not sure.
1 (a)

$$
P(Y=1 \text { and } Z=1)=P(1 \text { yellow, } 1 \text { blue, } 1 \text { red })=\frac{{ }^{5} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1}}{{ }^{5} \mathrm{C}_{3}}=\frac{25}{91} .
$$

The other entries are calculated similarly. Six of them are

$$
\frac{{ }^{5} \mathrm{C}_{0} \times{ }^{5} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{2}}{{ }^{15} \mathrm{C}_{3}}=\frac{10}{91}
$$

and the remaining three are

$$
\frac{{ }^{5} \mathrm{C}_{0} \times{ }^{5} \mathrm{C}_{0} \times{ }^{5} \mathrm{C}_{3}}{{ }^{15} \mathrm{C}_{3}}=\frac{2}{91} .
$$

These give the joint probability mass function for Y and Z in this table.

		values of Z			
		0	1	2	3
values	0	$\frac{2}{91}$	$\frac{10}{91}$	$\frac{10}{91}$	$\frac{2}{91}$
	2	$\frac{10}{91}$	$\frac{25}{91}$	$\frac{10}{91}$	0
	2	$\frac{10}{91}$	$\frac{10}{91}$	0	0
	3	$\frac{2}{91}$	0	0	0

(b) The row totals give the probability mass function of Y as follows.

y	0	1	2	3
$P(Y=y)$	$\frac{24}{91}$	$\frac{45}{91}$	$\frac{20}{91}$	$\frac{2}{91}$

Then

$$
E(Y)=\frac{1 \times 45+2 \times 20+3 \times 2}{91}=1
$$

and

$$
E\left(Y^{2}\right)=\frac{1 \times 45+4 \times 20+9 \times 2}{91}=\frac{11}{7}
$$

so

$$
\operatorname{Var}(Y)=\frac{11}{7}-1^{2}=\frac{4}{7} .
$$

(c) (i)

$$
E(Y Z)=\frac{1 \times 1 \times 25+1 \times 2 \times 10+2 \times 1 \times 10}{91}=\frac{5}{7}
$$

So

$$
\operatorname{Cov}(Y, Z)=E(Y Z)-E(Y) E(Z)=\frac{5}{7}-1^{2}=-\frac{2}{7}
$$

Are you surprised that this is negative?
(ii)

$$
\operatorname{corr}(Y, Z)=\frac{\operatorname{Cov}(Y, Z)}{\sqrt{\operatorname{Var}(Y) \operatorname{Var}(Z)}}=\frac{-\frac{2}{7}}{\frac{4}{7}}=-\frac{1}{2} .
$$

(d) The probability mass function for Z is the same as the pmf for Y, so $E(Z)=E(Y)$ and $\operatorname{Var}(Z)=\operatorname{Var}(Y)$.
(i) $E(Y-Z)=E(Y)-E(Z)=0$.
(ii) $\operatorname{Var}(Y-Z)=\operatorname{Var}(Y)-2 \operatorname{Cov}(Y, Z)+\operatorname{Var}(Y)=\frac{4}{7}+2 \times \frac{2}{7}+\frac{4}{7}=\frac{12}{7}$.
(e) Y and Z are not independent of each other, because $\operatorname{Cov}(Y, Z) \neq 0$.

2 (a) $X \sim \operatorname{Bin}\left(208, \frac{1}{4}\right)$ so $E(X)=\frac{208}{4}=52$.
(b) $\operatorname{Var}(X)=208 \times \frac{1}{4} \times \frac{3}{4}=39$, so X is approximately distributed like Y, where $Y \sim N(52,39)$. Using the continuity correction,

$$
\begin{aligned}
P(50 \leq X \leq 60) & =P\left(49 \frac{1}{2} \leq X \leq 60 \frac{1}{2}\right) \\
& \approx P\left(49 \frac{1}{2} \leq Y \leq 60 \frac{1}{2}\right) \\
& =P\left(\frac{49 \frac{1}{2}-52}{\sqrt{39}} \leq \frac{Y-52}{\sqrt{39}} \leq \frac{60 \frac{1}{2}-52}{\sqrt{39}}\right) \\
& =P(-0.40 \leq Z \leq 1.36) \quad \text { where } Z \sim N(0,1) \\
& =\Phi(1.36)-\Phi(-0.40) \\
& =\Phi(1.36)-(1-\Phi(0.40)) \\
& =0.9131-(1-0.6554) \quad \text { from Table } 4 \text { in Cambridge Tables } \\
& =0.5685 .
\end{aligned}
$$

