QUEEN MARY, UNIVERSITY OF LONDON

MAS 108

Probability I

Solutions 10

Autumn 2005

Here are possible solutions to Questions 1 and 2 on Assignment 10. If your method of solution is different it may still be correct. Come and ask me if you are not sure.

1 (a)

$$P(Y = 1 \text{ and } Z = 1) = P(1 \text{ yellow, } 1 \text{ blue, } 1 \text{ red}) = \frac{{}^{5}C_{1} \times {}^{5}C_{1} \times {}^{5}C_{1}}{{}^{15}C_{3}} = \frac{25}{91}.$$

The other entries are calculated similarly. Six of them are

$$\frac{{}^{5}\mathrm{C}_{0} \times {}^{5}\mathrm{C}_{1} \times {}^{5}\mathrm{C}_{2}}{{}^{15}\mathrm{C}_{3}} = \frac{10}{91}$$

and the remaining three are

$$\frac{{}^{5}C_{0} \times {}^{5}C_{0} \times {}^{5}C_{3}}{{}^{15}C_{3}} = \frac{2}{91}.$$

These give the joint probability mass function for *Y* and *Z* in this table.

.

		values of Z				
		0	1	2	3	
	0	$\frac{2}{91}$	$\frac{10}{91}$	$\frac{10}{91}$	$\frac{2}{91}$	
values	1	$\frac{10}{91}$	$\frac{25}{91}$	$\frac{10}{91}$	0	
of Y	2	$\frac{10}{91}$	$\frac{10}{91}$	0	0	
	3	$\frac{2}{91}$	0	0	0	

(b) The row totals give the probability mass function of *Y* as follows.

у	0	1	2	3
P(Y=y)	$\frac{24}{91}$	$\frac{45}{91}$	$\frac{20}{91}$	$\frac{2}{91}$

Then

$$E(Y) = \frac{1 \times 45 + 2 \times 20 + 3 \times 2}{91} = 1$$

and

$$E(Y^2) = \frac{1 \times 45 + 4 \times 20 + 9 \times 2}{91} = \frac{11}{7},$$

so

$$\operatorname{Var}(Y) = \frac{11}{7} - 1^2 = \frac{4}{7}.$$

(c) (i)

$$E(YZ) = \frac{1 \times 1 \times 25 + 1 \times 2 \times 10 + 2 \times 1 \times 10}{91} = \frac{5}{7}$$

so
$$Cov(Y,Z) = E(YZ) - E(Y)E(Z) = \frac{5}{7} - 1^2 = -\frac{2}{7}.$$

Are you surprised that this is negative?

(ii)

$$\operatorname{corr}(Y,Z) = \frac{\operatorname{Cov}(Y,Z)}{\sqrt{\operatorname{Var}(Y)\operatorname{Var}(Z)}} = \frac{-\frac{2}{7}}{\frac{4}{7}} = -\frac{1}{2}.$$

(d) The probability mass function for Z is the same as the pmf for Y, so E(Z) = E(Y) and Var(Z) = Var(Y).

(i)
$$E(Y-Z) = E(Y) - E(Z) = 0.$$

(ii)
$$\operatorname{Var}(Y-Z) = \operatorname{Var}(Y) - 2\operatorname{Cov}(Y,Z) + \operatorname{Var}(Y) = \frac{4}{7} + 2 \times \frac{2}{7} + \frac{4}{7} = \frac{12}{7}.$$

(e) *Y* and *Z* are not independent of each other, because $Cov(Y, Z) \neq 0$.

- 2 (a) $X \sim Bin(208, \frac{1}{4})$ so $E(X) = \frac{208}{4} = 52$.
 - (b) $Var(X) = 208 \times \frac{1}{4} \times \frac{3}{4} = 39$, so X is approximately distributed like Y, where $Y \sim N(52, 39)$. Using the continuity correction,

$$P(50 \le X \le 60) = P\left(49\frac{1}{2} \le X \le 60\frac{1}{2}\right)$$

$$\approx P\left(49\frac{1}{2} \le Y \le 60\frac{1}{2}\right)$$

$$= P\left(\frac{49\frac{1}{2} - 52}{\sqrt{39}} \le \frac{Y - 52}{\sqrt{39}} \le \frac{60\frac{1}{2} - 52}{\sqrt{39}}\right)$$

$$= P(-0.40 \le Z \le 1.36) \quad \text{where } Z \sim N(0,1)$$

$$= \Phi(1.36) - \Phi(-0.40)$$

$$= \Phi(1.36) - (1 - \Phi(0.40))$$

$$= 0.9131 - (1 - 0.6554) \quad \text{from Table 4 in Cambridge Tables}$$

$$= 0.5685.$$