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Some discrete random variables

We now look at five types of discrete random variables, each depending on one or
more parameters. We describe for each type the situations in which it arises, and give
the p.m.f., the expected value, and the variance. If the variable is tabulatedNethe
Cambridge Statistical Tabl€d], we give the table number, and some examples of
using the tables. You should have a copy of the tables to follow the examples.

A summary of this information is given on the course information sheet entitled
Discrete random variabledMake sure that you have a copy of this sheet too.

Before we begin, a comment on thlew Cambridge Statistical Tabl¢]. They
don’t give the probability mass function (or p.m.f.), but a closely related function
called thecumulative distribution functiarit is defined for a discrete random variable
as follows.

Let X be a random variable taking valuas ay, . ..,a,. We assume that these are
arranged in ascending ordex; < ap < --- < a,. Thecumulative distribution functign
or c.d.f., ofX is given by

Fx(ai) = P(X < a&).
We see that it can be expressed in terms of the p.mX. ad follows:
I
Fx(a)=P(X=a1)+---+PX=a) =} P(X=a).
j=1

In the other direction, we cn recover the p.m.f. from the c.d.f.:
P(X = &) = Fx(a) — Fx(ai-1).

Usually the values of a random variable in the tables are integers starting at O or
sometimes 1. In this case, the equations become


http://www.maths.qmul.ac.uk/~rab/ProbI/drv.pdf

Fx(k) = P(X<K)
= P(X=0)+P(X=1)+-+P(X =Kk),
PX =Kk = Fx(k)—Fx(k—1),
PX>k = 1—Fx(k—1),
Pk<X<l) = F(l)—Fx(k-1).

For example, the last equation holds because we obtain the probability<thét< |
by working out the probability of the values 0, 1, .|.and subtracting the ones we
dontwant: 0,1, ...k— 1.

We won't use the c.d.f. of a discrete random variable except for looking up the
tables. It is much more important for continuous random variables!

Bernoulli random variable Bernoulli( p)
A Bernoulli random variable is the simplest type of all. It only takes two values, O
and 1. So its p.m.f. looks as follows:

X‘O 1
PX=x|a p

Here, p is the probability thaX = 1; it can be any number between 0 and 1. Neces-
sarily g (the probability thalX = 0) is equal to - p. So p determines everything.

For a Bernoulli random variabl¥, we sometimes describe the experiment as a
‘trial’, the eventX = 1 as'success’, and the eveXit= 0 as ‘failure’.

For example, if a biased coin has probabilgyf coming down heads, then the
number of heads that we get when we toss the coin once is a Befpypulindom
variable.

More generally, leA be any event in a probability spage With A, we associate
a random variablés (remember that a random variable is just a functiorspby the
rule

1 ifseA

I(s) = {o if s A,
The random variablk, is called thendicator variableof A, because its value indicates
whether or notA occurred. It is a Bernoullp) random variable, wherg = P(A).
(The eventa = 1is just the evenf.) Some people write Adlinstead ofl 5. This shows
that Bernoulli random variables are essentially the same thing as events, so that if we
wanted to we could do all probability theory with random variables and never mention
events!



Calculation of the expected value and variance of a Bernoulli random variable is
easy. LeiX ~ Bernoulli(p). (Remember that means “has the same p.m.f. as” or “is
distributed as”.)

E(X)=0-g+1-p=p;
Var(X) = 0%-q+12-p— p? = p— p? = pg.
(Remember thag=1—p.)

Binomial random variable Bin(n, p)

Remember that for a Bernoulli random variable, we describe the &ent as
a ‘success’. Now dinomial random variablecounts the number of successesiin
independent trials each associated with a Berng)lliandom variable.

For example, suppose that we have a biased coin for which the probability of heads
is p. We toss the coim times and count the number of heads obtained. This number
is a Bin(n, p) random variable.

A Bin(n, p) random variable&X takes the values 0, 1, 2, . .n,and the p.m.f. oK
is given by

P(X =m) ="Cng" "p™ = b(m;n, p)

form=0,1, 2,... n,whereq=1— p. Thisis because there dl€, different ways of
obtainingm heads in a sequencemthrows (the number of choices of thepositions
in which the heads occur), and the probability of gettimgeads andh — mtails in a
particular order ig"™Mp™.

Note that we have given a formula rather than a table here. For small values we
could tabulate the results; for example, for Bnp):

m‘ 0 1 2 3
PX=m) | 3¢°p 3qp® p°

Adding up the probabilities giveg® + 3g?°p+ 3qp? + p° = (q+ p)° = 1, since
g=1— p. Moreover, we find that

E(X) = 0-¢°+1-3%p+2-3qp?+3-p°
= 3p(c®+2qp+ p?)
= 3p(g+p)?
= 3p,
Var(X) = 0%2.¢3+12-3¢°p+22-3qp?+3?- p>— (3p)?
= 3p(q® +4ap+3p?) — 9p?



= 3p(q+ p)(q+3p) — 9p°
= 3p(q+3p) — 9p?
= 3pg

For arbitraryn, when we add up all the probabilities in the table, we get

n

> "Crg" P =(q+p)" =1,

m=0

as it should be: here we used thieomial theorem

n

(x+y)"=3 "Crx" Ty

m=0

(This argument explains the name of the binomial random variable!)
The general formula for expected value and variancé efBin(n, p) is:

E(X)=np,  Var(X)=npg

There are three ways to prove this. The first method is straightforward but hard, tak-
ing the explicit calculations that we did above fore= 3 and making them work for
generah. The second method is more sophisticated, but relatively easy; it also works
for very many random variables whose values are integers. However, you can skip it
if you wish: | have set it in smaller type for this reason. We will see a third way (yet
more sophisticated but even easier) when we have done joint distributions.

The second method uses a gadget callegtbleability generating functianWe only use it here for
calculating expected values and variances, but if you learn more probability theory you will see other
uses for it. LetX be a random variable whose values are non-negative integers. (We don't insist that
it takes all possible values; this method is fine for the binomialBip), which takes values between
0 andn.) To save space, we writgy, for the probabilityP(X = m). Now theprobability generating
functionof X is the power series

Gx(x) = Z pmx™.

(The sum is over all valugs taken byX.) It may be abbreviated 1G(x) if it is obvious which random
variable we are talking about.
We use the notatioff (X)]x—1 for the result of substituting = 1 in the serie$ (X).
Proposition Let G(x) be the probability generating function of a random variabl&hen
@) [G(X)]x=1=1;
(b) E(X) = [§G (9] _y;

(c) Var(X) = [ & G(x)] FE(X) —E(X)2

dx x=1



Part (a) is just the statement that probabilities add up to 1: when we substitutein the power
series forG(x) we just gets pm.
For part (b), when we differentiate the series term-by-term (you will learn later in Analysis that
this is OK), we get
d _ m—1
&G(X) = z mpxX™

Now puttingx = 1 in this series we get
Z mpn = E(X).
For part (c), differentiating twice gives
o
dx2
Now puttingx = 1 in this series we get
S mm—1)pm =5 m’pm— Y mpm = E(X?) — E(X).
Adding E(X) and subtracting (X)? givesE (X?) — E(X)?, which by definition is VafX).

G(x) = m(m—1)pmx™2.

Now let us appply this to the binomial random varialle- Bin(n, p). We have
pm =P(X =m) ="Cnq" "p",

so the probability generating function is

n

> "Cong™ "p"X" = (a+ pX)",

m=0

by the Binomial Theorem. Putting= 1 gives(q+ p)" = 1, in agreement with the Proposition.
Differentiating once, using the Chain Rule, we getq+ px)"L. Puttingx = 1 we find that

E(X)=np.

Differentiating again, we get(n— 1)p?(q+ px)"~2. Puttingx = 1 givesn(n— 1)p?. Now adding
E(X) — E(X)?, we get

Var(X) = n(n—1)p? +np—n?p? = np—np? = npg

The binomial random variable is tabulated in Table 1 of@aenbridge Statistical
Tables[1]. As explained earlier, the tables give the cumulative distribution function.
For example, suppose that the probability that a certain coin comes down heads
is 0.45. If the coin is tossed 15 times, what is the probability of five or fewer heads?
Turning to the page = 15 in Table 1 and looking at the row4b, you read off the
answer ®608. What is the probability of exactly five heads? ThiB(S or fewer) —
P(4 or fewel, and from tables the answer i2608— 0.1204= 0.1404.



The tables only go up tp=0.5. For larger values gf, use the fact that the number
of failures in Bin(n, p) is equal to the number of successes in(Bid — p). So the
probability of five heads in 15 tosses of a coin wih= 0.55 is Q9745— 0.9231=
0.0514. More formally, ifX ~ Bin(15,0.55), andY = 15— X, thenY ~ Bin(15,0.45).

Another interpretation of the binomial random variable concerns sampling. Sup-
pose that we havd balls in a box, of whictM are red. We sampleballs from the box
with replacement; let the random varialdeébe the number of red balls in the sample.
What is the distribution oK? Since each ball has probabilit§/N of being red, and
different choices are independeXt~ Bin(n, p), wherep=M/N is the proportion of
red balls in the sample.

What about sampling without replacement? This leads us to our next random
variable:

Hypergeometric random variable Hg(n,M,N)

Suppose that we haweballs in a box, of whictM are red. We sampleballs from
the boxwithout replacement_et the random variabl¥ be the number of red balls in
the sample. Such aXis called ahypergeometricandom variable H@, M, N).

The random variablX can take any of the values 0, 1, 2, .n. Jts p.m.f. is given
by the formula
MCm % N—M Cnm

NC, :

For the number of samples nfalls fromN is NC,,; the number of ways of choosing
mof theM red balls anch— mof theN — M others iMC, x N"MC,,_; and all choices
are equally likely.
The expected value and variance of a hypergeometric random variable are as fol-
lows (we won’t go into the proofs):

E(X):n(%), Var(X):n<%> (N&M) (E:D

You should compare these to the values for a binomial random variable. If we let
p = M/N be the proportion of red balls in the box, thE(X) = np, and VafX) is
equal tonpgmultiplied by a ‘correction factor{N —n) /(N —1).

In particular, if the numbers! andN — M of red and non-red balls in the box are
both very large compared to the sizef the sample, then the difference between sam-
pling with and without replacement is very small, and indeed the ‘correction factor’ is
close to 1. So we can say that figM, N) is approximately Bign,M/N) if nis small
compared toM andN — M.

Consider the example from the last notes of choosing five sheep from 24, of which
6 are shorn. The numbet of shorn sheep in the sample is a (8d,24) random

P(X=m)=

6



variable. We calculated in the last notes tB&X) = 1.2501 and VafX) = 0.7743,
but noted that these figures were affected by rounding errors. The formulae above
show that the exact values should be

5 5 3 19 285

Geometric random variable Geon{p)

The geometric random variable is like the binomial but with a different stopping
rule. We have again a coin whose probability of heads iNow, instead of tossing it
a fixed number of times and counting the heads, we toss it until it comes down heads
for the first time, and count the number of times we have tossed the coin. Thus, the
values of the variable are the positive integers 1, 2, 3, .... (In theory we might never
get a head and toss the coin infinitely often, bup i O this possibility is ‘infinitely
unlikely’, i.e. has probability zero, as we will see.) We always assume thiap & 1.

More generally, the number of independent Bernoulli trials required until the first
success is obtained is a geometric random variable.

The p.m.f. of a Geoltp) random variable is given by

P(X=m)=g™!p,

whereq = 1— p. For the eveniX = m means that we get tails on the first— 1
tosses and heads on ttieh, and this event has probabilit"1p, since ‘tails’ has
probabilityq and different tosses are independent.
Let’'s add up these probabilities:

Y ™ tp=p+ap+ e+ = L qr ) = oo =1
m=1 —q
since the series in parentheses is a geometric progression with first term 1 and common
ratio g, whereq < 1. (Just as the binomial theorem shows that probabilities sum to 1
for a binomial random variable, and gives its nhame to the random variable, so the
geometric progression does for the geometric random variable.)

We calculate the expected value and the variance using the probability generating
function. If X ~ Geon{p), the result will be that

E(X)=1/p,  Var(X)=q/p%

We have




again by summing a geometric progression. Differentiating, we get

d _(I-g¥p+pxqg  p
oW T gz @

Puttingx = 1, we obtain

Differentiating again gives g/ (1 — gx)3, so

Var(X):@JrE—i:ﬂ.

P p PP

For example, if we toss a fair coin until heads is obtained, the expected number of
tosses until the first head is 2 (so the expected number of tails is 1); and the variance
of this number is also 2.

Poisson random variable PoissoIfA)

The Poisson random variable, unlike the ones we have seen before, is very closely
connected with continuous things.

Suppose that ‘incidents’ occur at random times, but at a steady rate overall. The
best example is radioactive decay: atomic nuclei decay randomly, but the average
numberA which will decay in a given interval is constant. The Poisson random vari-
able X counts the number of ‘incidents’ which occur in a given interval. So if, on
average, there are2nuclear decays per second, then the number of decays in one
second starting now is a Poisg@m) random variable.

Another example might be the number of telephone calls a minute to a busy tele-
phone number, or the number of people joining the queue at the bus-stop in the next
minute.

The p.m.f. for a Poissdqn) variableX is given by the formula

ZAT
P(X=m) = AH
form=0, 1, .... Itis derived from the binomial distribution. | do not expect you to

reproduce this derivation, so | am putting it in small type.

Suppose that the incidents happen at the radepefr minute. Choose large enough that it is very
unlikely for two or more incidents to happen in offe'n)-th of a minute. Then the number that happen
in such a small interval of time is approximately Berndud)i for some suitable. If the incidents in
the n different parts of the minute are mutually independent And the number of incidents in one
minute thenX ~ Bin(n, p). ThenE(X) = np. But we know thaE(X) =A sop=A/n.



Now,

ix-m = ren(2)(1-2)""

n-(n-1)-(n—2)---(n—m+1) A" <1 A)n( 1
1

n-n - n - n m! n _A)m
n

n
Now letntend toe, Each of thenratios in the first term tends to 1. The second term hasinat, so
it stays as\™/ml. For the third term, we need to use the fact that

n
(l— )\) — e
n

asn — oo, which you will learn in Calculus. In the fourth tertkh/n — 0, so(1—A/n) — 1 so the whole

term tends to 11™, which is 1. Thus the limiting value d¥(X = m) is indeed e*\™/m.

In the lectures | gave the example of of bristles falling out of my hairbrush when | brush my (thick
and tangly) hair. Initially there arl bristles, so it is reasonable to suppose that the random variable
X, which counts how many bristles fall out when | brush my hair, is(Rirp) for some probabilityp.
But what happens when there are only 10 bristles left? Xlshould be a random variable with first
parameter 10, but what should the probability be? It seems reasonable to suppose that | apply constant
force K when | brush my hair. WithN bristles, that force is spread over all of them,sehould be
(proportional to)K/N. When there are only 10 bristles, the same force is spread over just those 10
bristles, so the probablity should be (proportionalkg)LO. Thus, in general, when there arbristles

left then K
X ~ Bin (n, ) )
n

Replacingk by A and taking the limit as — o gives the same result as above.
Let’s check that these probabilities add up to one. We get

(i %)e‘)‘:@-e‘)‘:l,

m=0

since the expression in brackets is the sum of the exponential series.

By analogy with what happened for the binomial and geometric random variables,
you might have expected that this random variable would be called ‘exponential’. Un-
fortunately, this name has been given to a closely-related continuous random variable
which we will meet later. However, if you speak a little French, you might use as a
mnemonic the fact that if | go fishing, and the fish are biting at the rakepef hour on
average, then the number of fish I will catch in the next hour is a PgiA$oandom
variable.



The expected value and variance of a Poigsprandom variableX are given by
E(X) = Var(X) =A.

Again we use the probability generating functionXIf- Poissof()), then

0

G(x) = Zoeh()\r‘::!)m = 1)

again using the series for the exponential function.
Differentiation gives\e**~1, soE(X) = A. Differentiating again givea2e**~1, so

Var(X) = A2+ A —A2 =,

The line graphs on the next page illustrate how the binomial distribution tends
towards the Poisson when= 5.

The cumulative distribution function of a Poisson random variable is tabulated in
Table 2 of theNew Cambridge Statistical TableSo, for example, we find from the
tables that, if 24 fish bite per hour on average, then the probability that | will catch
no fish in the next hour is.0907, while the probability that | catch at five or fewer is
0.9643 (so that the probability that | catch six or more.8357).

There is another situation in which the Poisson distribution arises. Suppose | am
looking for some very rare event which only occurs once in 1000 trials on average.
So | conduct 1000 independent trials. How many occurrences of the event do | see?
This number is really a binomial random variable Bi6001/1000. But we have
seen above that this is Pois$a) to a very good approximation. So, for example, the
probability that the event doesn’t occur is aboyel

The general rule is:

If nis large,p is small, anchp = A, then Bir(n, p) can be approximated
by Poisso).

For example, if the lake contains 2400 fish and if each fish bites independently
with probability 1/1000 in an hour, then the number of fish | catch in an hour is
Bin(240Q 1/1000), which is approximately Poiss¢24).

[1] D. V. Lindley and W. F. ScottNew Cambridge Statistical TableSambridge Uni-
versity Press.
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