
MAS 108 Probability I

Notes 8 Autumn 2005

Some discrete random variables

We now look at five types of discrete random variables, each depending on one or
more parameters. We describe for each type the situations in which it arises, and give
the p.m.f., the expected value, and the variance. If the variable is tabulated in theNew
Cambridge Statistical Tables[1], we give the table number, and some examples of
using the tables. You should have a copy of the tables to follow the examples.

A summary of this information is given on the course information sheet entitled
Discrete random variables. Make sure that you have a copy of this sheet too.

Before we begin, a comment on theNew Cambridge Statistical Tables[1]. They
don’t give the probability mass function (or p.m.f.), but a closely related function
called thecumulative distribution function. It is defined for a discrete random variable
as follows.

Let X be a random variable taking valuesa1, a2, . . . ,an. We assume that these are
arranged in ascending order:a1 < a2 < · · ·< an. Thecumulative distribution function,
or c.d.f., ofX is given by

FX(ai) = P(X ≤ ai).

We see that it can be expressed in terms of the p.m.f. ofX as follows:

FX(ai) = P(X = a1)+ · · ·+P(X = ai) =
i

∑
j=1

P(X = a j).

In the other direction, we cn recover the p.m.f. from the c.d.f.:

P(X = ai) = FX(ai)−FX(ai−1).

Usually the values of a random variable in the tables are integers starting at 0 or
sometimes 1. In this case, the equations become
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FX(k) = P(X ≤ k)
= P(X = 0)+P(X = 1)+ · · ·+P(X = k),

P(X = k) = FX(k)−FX(k−1),
P(X ≥ k) = 1−FX(k−1),

P(k≤ X ≤ l) = FX(l)−FX(k−1).

For example, the last equation holds because we obtain the probability thatk≤ X ≤ l
by working out the probability of the values 0, 1, . . . ,l and subtracting the ones we
don’t want: 0, 1, . . . ,k−1.

We won’t use the c.d.f. of a discrete random variable except for looking up the
tables. It is much more important for continuous random variables!

Bernoulli random variable Bernoulli(p)
A Bernoulli random variable is the simplest type of all. It only takes two values, 0

and 1. So its p.m.f. looks as follows:

x 0 1

P(X = x) q p

Here,p is the probability thatX = 1; it can be any number between 0 and 1. Neces-
sarilyq (the probability thatX = 0) is equal to 1− p. Sop determines everything.

For a Bernoulli random variableX, we sometimes describe the experiment as a
‘trial’, the eventX = 1 as‘success’, and the eventX = 0 as ‘failure’.

For example, if a biased coin has probabilityp of coming down heads, then the
number of heads that we get when we toss the coin once is a Bernoulli(p) random
variable.

More generally, letA be any event in a probability spaceS . With A, we associate
a random variableIA (remember that a random variable is just a function onS ) by the
rule

IA(s) =
{

1 if s∈ A;
0 if s /∈ A.

The random variableIA is called theindicator variableof A, because its value indicates
whether or notA occurred. It is a Bernoulli(p) random variable, wherep = P(A).
(The eventIA = 1 is just the eventA.) Some people write 11A instead ofIA. This shows
that Bernoulli random variables are essentially the same thing as events, so that if we
wanted to we could do all probability theory with random variables and never mention
events!
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Calculation of the expected value and variance of a Bernoulli random variable is
easy. LetX ∼ Bernoulli(p). (Remember that∼means “has the same p.m.f. as” or “is
distributed as”.)

E(X) = 0·q+1· p = p;

Var(X) = 02 ·q+12 · p− p2 = p− p2 = pq.

(Remember thatq = 1− p.)

Binomial random variable Bin(n, p)
Remember that for a Bernoulli random variable, we describe the eventX = 1 as

a ‘success’. Now abinomial random variablecounts the number of successes inn
independent trials each associated with a Bernoulli(p) random variable.

For example, suppose that we have a biased coin for which the probability of heads
is p. We toss the coinn times and count the number of heads obtained. This number
is a Bin(n, p) random variable.

A Bin(n, p) random variableX takes the values 0, 1, 2, . . . ,n, and the p.m.f. ofX
is given by

P(X = m) = nCmqn−mpm = b(m;n, p)

for m= 0, 1, 2, . . . ,n, whereq= 1− p. This is because there arenCm different ways of
obtainingmheads in a sequence ofn throws (the number of choices of thempositions
in which the heads occur), and the probability of gettingm heads andn−m tails in a
particular order isqn−mpm.

Note that we have given a formula rather than a table here. For small values we
could tabulate the results; for example, for Bin(3, p):

m 0 1 2 3

P(X = m) q3 3q2p 3qp2 p3

Adding up the probabilities givesq3 + 3q2p+ 3qp2 + p3 = (q+ p)3 = 1, since
q = 1− p. Moreover, we find that

E(X) = 0·q3 +1·3q2p+2·3qp2 +3· p3

= 3p(q2 +2qp+ p2)
= 3p(q+ p)2

= 3p,

Var(X) = 02 ·q3 +12 ·3q2p+22 ·3qp2 +32 · p3− (3p)2

= 3p(q2 +4qp+3p2)−9p2
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= 3p(q+ p)(q+3p)−9p2

= 3p(q+3p)−9p2

= 3pq.

For arbitraryn, when we add up all the probabilities in the table, we get

n

∑
m=0

nCmqn−mpm = (q+ p)n = 1,

as it should be: here we used thebinomial theorem

(x+y)n =
n

∑
m=0

nCmxn−mym.

(This argument explains the name of the binomial random variable!)
The general formula for expected value and variance ofX ∼ Bin(n, p) is:

E(X) = np, Var(X) = npq.

There are three ways to prove this. The first method is straightforward but hard, tak-
ing the explicit calculations that we did above forn = 3 and making them work for
generaln. The second method is more sophisticated, but relatively easy; it also works
for very many random variables whose values are integers. However, you can skip it
if you wish: I have set it in smaller type for this reason. We will see a third way (yet
more sophisticated but even easier) when we have done joint distributions.

The second method uses a gadget called theprobability generating function. We only use it here for
calculating expected values and variances, but if you learn more probability theory you will see other
uses for it. LetX be a random variable whose values are non-negative integers. (We don’t insist that
it takes all possible values; this method is fine for the binomial Bin(n, p), which takes values between
0 andn.) To save space, we writepm for the probabilityP(X = m). Now theprobability generating
functionof X is the power series

GX(x) = ∑ pmxm.

(The sum is over all valuesm taken byX.) It may be abbreviated toG(x) if it is obvious which random
variable we are talking about.

We use the notation[F(x)]x=1 for the result of substitutingx = 1 in the seriesF(x).

Proposition Let G(x) be the probability generating function of a random variableX. Then

(a) [G(x)]x=1 = 1;

(b) E(X) =
[

d
dxG(x)

]
x=1;

(c) Var(X) =
[

d2

dx2 G(x)
]

x=1
+E(X)−E(X)2.
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Part (a) is just the statement that probabilities add up to 1: when we substitutex = 1 in the power
series forG(x) we just get∑ pm.

For part (b), when we differentiate the series term-by-term (you will learn later in Analysis that
this is OK), we get

d
dx

G(x) = ∑mpmxm−1.

Now puttingx = 1 in this series we get

∑mpm = E(X).

For part (c), differentiating twice gives

d2

dx2 G(x) = ∑m(m−1)pmxm−2.

Now puttingx = 1 in this series we get

∑m(m−1)pm = ∑m2pm−∑mpm = E(X2)−E(X).

AddingE(X) and subtractingE(X)2 givesE(X2)−E(X)2, which by definition is Var(X).

Now let us appply this to the binomial random variableX ∼ Bin(n, p). We have

pm = P(X = m) = nCmqn−mpm,

so the probability generating function is

n

∑
m=0

nCmqn−mpmxm = (q+ px)n,

by the Binomial Theorem. Puttingx = 1 gives(q+ p)n = 1, in agreement with the Proposition.
Differentiating once, using the Chain Rule, we getnp(q+ px)n−1. Puttingx = 1 we find that

E(X) = np.

Differentiating again, we getn(n− 1)p2(q+ px)n−2. Puttingx = 1 givesn(n− 1)p2. Now adding
E(X)−E(X)2, we get

Var(X) = n(n−1)p2 +np−n2p2 = np−np2 = npq.

The binomial random variable is tabulated in Table 1 of theCambridge Statistical
Tables[1]. As explained earlier, the tables give the cumulative distribution function.

For example, suppose that the probability that a certain coin comes down heads
is 0.45. If the coin is tossed 15 times, what is the probability of five or fewer heads?
Turning to the pagen = 15 in Table 1 and looking at the row 0.45, you read off the
answer 0.2608. What is the probability of exactly five heads? This isP(5 or fewer)−
P(4 or fewer), and from tables the answer is 0.2608−0.1204= 0.1404.
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The tables only go up top= 0.5. For larger values ofp, use the fact that the number
of failures in Bin(n, p) is equal to the number of successes in Bin(n,1− p). So the
probability of five heads in 15 tosses of a coin withp = 0.55 is 0.9745−0.9231=
0.0514. More formally, ifX∼Bin(15,0.55), andY = 15−X, thenY∼Bin(15,0.45).

Another interpretation of the binomial random variable concerns sampling. Sup-
pose that we haveN balls in a box, of whichM are red. We samplen balls from the box
with replacement; let the random variableX be the number of red balls in the sample.
What is the distribution ofX? Since each ball has probabilityM/N of being red, and
different choices are independent,X ∼ Bin(n, p), wherep= M/N is the proportion of
red balls in the sample.

What about sampling without replacement? This leads us to our next random
variable:

Hypergeometric random variable Hg(n,M,N)
Suppose that we haveN balls in a box, of whichM are red. We samplen balls from

the boxwithout replacement. Let the random variableX be the number of red balls in
the sample. Such anX is called ahypergeometricrandom variable Hg(n,M,N).

The random variableX can take any of the values 0, 1, 2, . . . ,n. Its p.m.f. is given
by the formula

P(X = m) =
MCm×N−MCn−m

NCn
.

For the number of samples ofn balls fromN is NCn; the number of ways of choosing
mof theM red balls andn−mof theN−M others isMCm×N−MCn−m; and all choices
are equally likely.

The expected value and variance of a hypergeometric random variable are as fol-
lows (we won’t go into the proofs):

E(X) = n

(
M
N

)
, Var(X) = n

(
M
N

)(
N−M

N

)(
N−n
N−1

)
.

You should compare these to the values for a binomial random variable. If we let
p = M/N be the proportion of red balls in the box, thenE(X) = np, and Var(X) is
equal tonpqmultiplied by a ‘correction factor’(N−n)/(N−1).

In particular, if the numbersM andN−M of red and non-red balls in the box are
both very large compared to the sizen of the sample, then the difference between sam-
pling with and without replacement is very small, and indeed the ‘correction factor’ is
close to 1. So we can say that Hg(n,M,N) is approximately Bin(n,M/N) if n is small
compared toM andN−M.

Consider the example from the last notes of choosing five sheep from 24, of which
6 are shorn. The numberX of shorn sheep in the sample is a Hg(5,6,24) random
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variable. We calculated in the last notes thatE(X) = 1.2501 and Var(X) = 0.7743,
but noted that these figures were affected by rounding errors. The formulae above
show that the exact values should be

E(X) =
5
4

and Var(X) =
5
4
× 3

4
× 19

23
=

285
368

.

Geometric random variable Geom(p)
The geometric random variable is like the binomial but with a different stopping

rule. We have again a coin whose probability of heads isp. Now, instead of tossing it
a fixed number of times and counting the heads, we toss it until it comes down heads
for the first time, and count the number of times we have tossed the coin. Thus, the
values of the variable are the positive integers 1, 2, 3, . . . . (In theory we might never
get a head and toss the coin infinitely often, but ifp > 0 this possibility is ‘infinitely
unlikely’, i.e. has probability zero, as we will see.) We always assume that 0< p < 1.

More generally, the number of independent Bernoulli trials required until the first
success is obtained is a geometric random variable.

The p.m.f. of a Geom(p) random variable is given by

P(X = m) = qm−1p,

whereq = 1− p. For the eventX = m means that we get tails on the firstm− 1
tosses and heads on themth, and this event has probabilityqm−1p, since ‘tails’ has
probabilityq and different tosses are independent.

Let’s add up these probabilities:

∞

∑
m=1

qm−1p = p+qp+q2p+ · · ·= p(1+q+q2 + · · ·) =
p

1−q
= 1,

since the series in parentheses is a geometric progression with first term 1 and common
ratio q, whereq < 1. (Just as the binomial theorem shows that probabilities sum to 1
for a binomial random variable, and gives its name to the random variable, so the
geometric progression does for the geometric random variable.)

We calculate the expected value and the variance using the probability generating
function. If X ∼Geom(p), the result will be that

E(X) = 1/p, Var(X) = q/p2.

We have

G(x) =
∞

∑
m=1

qm−1pxm =
px

1−qx
,
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again by summing a geometric progression. Differentiating, we get

d
dx

G(x) =
(1−qx)p+ pxq

(1−qx)2 =
p

(1−qx)2 .

Puttingx = 1, we obtain

E(X) =
p

(1−q)2 =
1
p
.

Differentiating again gives 2pq/(1−qx)3, so

Var(X) =
2pq
p3 +

1
p
− 1

p2 =
q
p2 .

For example, if we toss a fair coin until heads is obtained, the expected number of
tosses until the first head is 2 (so the expected number of tails is 1); and the variance
of this number is also 2.

Poisson random variable Poisson(λ)
The Poisson random variable, unlike the ones we have seen before, is very closely

connected with continuous things.
Suppose that ‘incidents’ occur at random times, but at a steady rate overall. The

best example is radioactive decay: atomic nuclei decay randomly, but the average
numberλ which will decay in a given interval is constant. The Poisson random vari-
ableX counts the number of ‘incidents’ which occur in a given interval. So if, on
average, there are 2.4 nuclear decays per second, then the number of decays in one
second starting now is a Poisson(2.4) random variable.

Another example might be the number of telephone calls a minute to a busy tele-
phone number, or the number of people joining the queue at the bus-stop in the next
minute.

The p.m.f. for a Poisson(λ) variableX is given by the formula

P(X = m) = e−λ λm

m!

for m= 0, 1, . . . . It is derived from the binomial distribution. I do not expect you to
reproduce this derivation, so I am putting it in small type.

Suppose that the incidents happen at the rate ofλ per minute. Choosen large enough that it is very
unlikely for two or more incidents to happen in one(1/n)-th of a minute. Then the number that happen
in such a small interval of time is approximately Bernoulli(p) for some suitablep. If the incidents in
the n different parts of the minute are mutually independent andX is the number of incidents in one
minute thenX ∼ Bin(n, p). ThenE(X) = np. But we know thatE(X) = λ so p = λ/n.
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Now,

P(X = m) = nCm

(
λ
n

)m(
1− λ

n

)n−m

=
n!

m! (n−m)!
λm

nm

(
1− λ

n

)n 1(
1− λ

n

)m

=
n· (n−1) · (n−2) · · ·(n−m+1)
n· n · n · · · n

λm

m!

(
1− λ

n

)n 1(
1− λ

n

)m

Now letn tend to∞. Each of them ratios in the first term tends to 1. The second term has non in it, so
it stays asλm/m!. For the third term, we need to use the fact that(

1− λ
n

)n

→ e−λ

asn→∞, which you will learn in Calculus. In the fourth term,λ/n→ 0, so(1−λ/n)→ 1 so the whole

term tends to 1/1m, which is 1. Thus the limiting value ofP(X = m) is indeed e−λλm/m!.
In the lectures I gave the example of of bristles falling out of my hairbrush when I brush my (thick

and tangly) hair. Initially there areN bristles, so it is reasonable to suppose that the random variable
X, which counts how many bristles fall out when I brush my hair, is Bin(N, p) for some probabilityp.
But what happens when there are only 10 bristles left? TheX should be a random variable with first
parameter 10, but what should the probability be? It seems reasonable to suppose that I apply constant
force K when I brush my hair. WithN bristles, that force is spread over all of them, sop should be
(proportional to)K/N. When there are only 10 bristles, the same force is spread over just those 10
bristles, so the probablity should be (proportional to)K/10. Thus, in general, when there aren bristles
left then

X ∼ Bin

(
n,

K
n

)
.

ReplacingK by λ and taking the limit asn→ ∞ gives the same result as above.

Let’s check that these probabilities add up to one. We get(
∞

∑
m=0

λm

m!

)
e−λ = eλ ·e−λ = 1,

since the expression in brackets is the sum of the exponential series.
By analogy with what happened for the binomial and geometric random variables,

you might have expected that this random variable would be called ‘exponential’. Un-
fortunately, this name has been given to a closely-related continuous random variable
which we will meet later. However, if you speak a little French, you might use as a
mnemonic the fact that if I go fishing, and the fish are biting at the rate ofλ per hour on
average, then the number of fish I will catch in the next hour is a Poisson(λ) random
variable.
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The expected value and variance of a Poisson(λ) random variableX are given by

E(X) = Var(X) = λ.

Again we use the probability generating function. IfX ∼ Poisson(λ), then

G(x) =
∞

∑
m=0

e−λ (λx)m

m!
= eλ(x−1),

again using the series for the exponential function.
Differentiation givesλeλ(x−1), soE(X) = λ. Differentiating again givesλ2eλ(x−1), so

Var(X) = λ2 +λ−λ2 = λ.

The line graphs on the next page illustrate how the binomial distribution tends
towards the Poisson whenλ = 5.

The cumulative distribution function of a Poisson random variable is tabulated in
Table 2 of theNew Cambridge Statistical Tables. So, for example, we find from the
tables that, if 2.4 fish bite per hour on average, then the probability that I will catch
no fish in the next hour is 0.0907, while the probability that I catch at five or fewer is
0.9643 (so that the probability that I catch six or more is 0.0357).

There is another situation in which the Poisson distribution arises. Suppose I am
looking for some very rare event which only occurs once in 1000 trials on average.
So I conduct 1000 independent trials. How many occurrences of the event do I see?
This number is really a binomial random variable Bin(1000,1/1000). But we have
seen above that this is Poisson(1), to a very good approximation. So, for example, the
probability that the event doesn’t occur is about 1/e.

The general rule is:

If n is large,p is small, andnp= λ, then Bin(n, p) can be approximated
by Poisson(λ).

For example, if the lake contains 2400 fish and if each fish bites independently
with probability 1/1000 in an hour, then the number of fish I catch in an hour is
Bin(2400,1/1000), which is approximately Poisson(2.4).

[1] D. V. Lindley and W. F. Scott,New Cambridge Statistical Tables, Cambridge Uni-
versity Press.
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Bin(10,0.5)

1 3 5 7 9

0.1

0.2

Bin(25,0.2)

1 3 5 7 9 11

0.1

0.2

Bin(50,0.1)

1 3 5 7 9 11

0.1

0.2

Poisson(5)

1 3 5 7 9 11

0.1

0.2
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