
MAS 108 Probability I

Notes 6 Autumn 2005

Random variables

A probability spaceis a sample spaceS together with a probability functionP which
satisfies Kolmogorov’s axioms.

The Holy Roman Empire was, in the words of the historian Voltaire, “neither holy,
nor Roman, nor an empire”. Similarly, a random variable is neither random nor a
variable:

A random variableis a function from a probability space to the real num-
bers.

Notation We usually use capital letters likeX, Y, Z to denote random variables.

Example (Child:part 1) One child is born, equally likely to be a boy of a girl. Then
S = {B,G}. We can define the random variableX by X(B) = 1 andX(G) = 0.

Example (One die: part 1)One fair six-sided die is thrown.X is the number show-
ing.

Example (Three coin tosses: part 1)I toss a fair coin three times; I count the number
of heads that come up.

Here, the sample space is

S = {HHH,HHT,HTH,HTT,THH,THT,TTH,TTT};

the random variableX is the function which counts the number ofHs in each outcome,
so thatX(THH) = 2, X(TTT) = 0, etc.

If x is any real number, the event “X = x” is defined to be the event

{s∈ S : X(s) = x},

which can also be written asX−1(x). The probability thatX = x, which is written
P(X = x), is just P({s∈ S : X(s) = x}). Similarly, other events can be defined in
terms of the value(s) taken byX: for example,P(X ≤ y) meansP({s∈ S : X(s)≤ y}).
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Notation P(X = x) is written p(x), or pX(x) if we need to emphasize the name of the
random variable. In handwriting, be careful to distinguish betweenX andx.

The list of values(x, p(x)), for thosex such that there is an outcomex in S with
X(s) = x, is called thedistributionof X. The functionx 7→ p(x) is called theprobability
mass functionof X, often abbreviated to pmf.

Often we concentrate on the distribution or on the probability mass function and
forget the sample space. Sometimes the pmf is given by a table of values, sometimes
by a formula. We can also draw theline graphof a pmf.

x y

values ofX

p(x)

p(y)

Example (Child: part 2) The distribution ofX is

x 0 1

p(x) 1
2

1
2

and the line graph is

0 1

1
2

0
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Example (One die: part 2)The distribution ofX is

x 1 2 3 4 5 6

p(x) 1
6

1
6

1
6

1
6

1
6

1
6

and the line graph is

1 2 3 4 5 6

1
6

0

Example A biased coin is tossed five times. Each time it has probabilityp of coming
down heads, independently of all other times. LetX be the number of heads. Then
P(X = m) = 5Cmpmq5−m for m= 0, . . . , 5, whereq = 1− p. So the pmf is:

m 0 1 2 3 4 5

p(m) q5 5pq4 10p2q3 10p3q2 5p4q p5

Different values ofp give different distributions. Here are three examples, together
with their line graphs.

p = 0.5

m 0 1 2 3 4 5

p(m) 0.031 0.156 0.313 0.313 0.156 0.031

0 1 2 3 4 5

0.2

0.4

0.6
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p = 0.6

m 0 1 2 3 4 5

p(m) 0.010 0.077 0.230 0.346 0.259 0.078

0 1 2 3 4 5

0.2

0.4

0.6

p = 0.9

m 0 1 2 3 4 5

p(m) 0.000 0.000 0.008 0.073 0.328 0.590

0 1 2 3 4 5

0.2

0.4

0.6

A random variableX is discreteif

either (a) {X(s) : s∈ S} is finite, that is,X takes only finitely many values,

or (b) {X(s) : s∈ S} is infinite but the valuesX can take are separated by gaps:
formally, there is some positive numberδ such that ifx andy are two different
numbers in{X(s) : s∈ S} then|x−y|> δ.
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For example,X is discrete if it can take only finitely many values (as in all the
examples above), or if the values ofX are integers.

Note that isX is discrete then∑x p(x) = 1, where the sum is taken over all values
x thatX takes.

Example An example where the number of values is infinite is the following: you
keep taking an exam until you pass it for the first time;X is the number of times you
sit the exam. There is no upper limit on the values ofX; for example, you cannot
guarantee to pass it even in 100 attempts. So the set of values is{1,2,3, . . .}, the set
of all positive integers.

How do we give the probability mass function if the set of values is infinite? Sup-
pose that your probability of passing isp at each attempt, independently of all previous
attempts. The eventX = m is made up of just the one outcomeFF . . .FP (with m−1
Fs); this has probabilityqm−1p whereq = 1− p. So we could just give a formula

P(X = m) = qm−1p for integersm≥ 1.

Alternatively, the following table makes it clear:

m 1 2 3 . . . n . . .

P(X = m) p qp q2p . . . qn−1p . . .

Whenp = 1/10 the (incomplete) line graph is as follows.

0.1

0
1 2 3 4 5 6 7 8 9

. . .

5



Example (Two dice: part 1) I throw two fair six-sided dice. I am interested in the
sum of the two numbers. Here the sample space is

S = {(i, j) : 1≤ i, j ≤ 6},

and we can define random variables as follows:

X = number on first die

Y = number on second die

Z = sum of the numbers on the two dice;

that is,X(i, j) = i, Y(i, j) = j andZ(i, j) = i + j.
Notice thatX andY aredifferentrandom variables even though they take the same

values and their probability mass functions are equal. They are are said to havethe
same distribution. We writeX ∼Y in this case.

The target set forZ is the set{2,3, . . . ,12}. Since each outcome has probability
1/36, the pmf is obtained by counting the number of ways we can achieve each value
and dividing by 36. For example, 9= 6+3= 5+4= 4+5= 3+6, soP(Z = 9) = 4

36.
We find:

k 2 3 4 5 6 7 8 9 10 11 12

P(Z = k) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

The line graph follows.

0

1
18

1
9

1
6

2 3 4 5 6 7 8 9 10 11 12

In the first coin-tossing example, ifY is the number of tails recorded during the
experiment, thenX andY again have the same distribution, even though their actual
values are different (indeed,Y = 3−X).
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Example (Sheep: part 1)There are 24 sheep in a field. The farmer shears 6 of them.
Later, he comes to the field and randomly samples 5 sheep without replacement. Let
X be the number of shorn sheep in his sample. Then

P(X = m) =
6Cm× 18C5−m

24C5

for m= 0, 1, 2, 3, 4, 5. To 4 decimal places the pmf is as follows.

m 0 1 2 3 4 5

p(m) 0.2016 0.4320 0.2880 0.0720 0.0064 0.0001

0

0.2

0.4

0 1 2 3 4 5

Expected value

Let X be a discrete random variable which takes the valuesa1, . . . , an. Theexpected
value (also called theexpectationor mean) of X is the numberE(X) given by the
formula

E(X) =
n

∑
i=1

aiP(X = ai).

That is, we multiply each value ofX by the probability thatX takes that value, and
sum these terms. Often I will write this sum as

∑
x

xp(x).

I may also writeµX for E(X), and may abbreviate this toµ if X is clear from the
context.

The expected value is a kind of ‘generalised average’: if each of the values is
equally likely, so that each has probability 1/n, thenE(X) = (a1 + · · ·+an)/n, which
is just the average of the values.
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There is an interpretation of the expected value in terms of mechanics. If we put
a masspi on the axis at positionai for i = 1, . . . ,n, wherepi = P(X = ai), then the
centre of mass of all these masses is at the pointE(X). In other words, if we make
the line graph out of metal (and do not include the vertical axis) then the graph will
balance at the pointE(X) on the horizontal axis.

If the random variableX takes infinitely many values, saya1, a2, a3, . . . , then we
define the expected value ofX to be the infinite sum

E(X) =
∞

∑
i=1

aiP(X = ai).

Of course, now we have to worry about whether this means anything, that is, whether
this infinite series is convergent. This is a question which is discussed at great length
in analysis. We won’t worry about it too much. Usually, discrete random variables
will only have finitely many values; in the few examples we consider where there
are infinitely many values, the series will usually be a geometric series or something
similar, which we know how to sum. In the proofs below, we assume that the number
of values is finite.

Example (Child: part 3)

E(X) = 0× 1
2

+1× 1
2

=
1
2
.

Example (One die: part 3)

E(X) =
1
6
(1+2+3+4+5+6) =

21
6

= 3.5.

Example (Sheep: part 2)

E(X) = 0×0.2016+1×0.4320+2×0.2880+3×0.0720+4×0.0064+5×0.0001

= 1.2501

to 4 decimal places. We shall see later that it should be exactly 5/4: what we have
here is affected by rounding error.

Example (Two dice: part 2)

E(Z) = 2× 1
36

+3× 2
36

+4× 3
36

+ · · ·+12× 1
36

=
1
36

(2+6+12+20+30+42+40+36+30+22+12)

= 7.
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Variance

While E(X) gives the centre of gravity of the distribution, the spread of the disributiion
is measured by the average value of(X−µX)2.

Thevarianceof X is the number Var(X) given by

Var(X) = ∑
x

(x−µX)2p(x),

whereµX = E(X). Sometimes it is written asσ2
X, or just asσ2 if X is clear from the

context.

Example (Sheep: part 3)

m 0 1 2 3 4 5

p(m) 0.2016 0.4320 0.2880 0.0720 0.0064 0.0001

m−1.25 −1.25 −0.25 0.75 1.75 2.75 3.75

Var(X) = (−1.25)2×0.2016+ · · ·+(3.75)2×0.0001= 0.7743.

(Again, there is rounding error, because the exact value should be 285/(16× 23),
which is 0.7745 to 4 decimal places.)

Theorem 3 If E(X) = µ then Var(X) = ∑xx2p(x)−µ2.

Proof

Var(X) = ∑
x

(x−µ)2p(x)

= ∑
x

(
x2−2µx+µ2) p(x)

= ∑
x

[
x2p(x)−2µxp(x)+µ2p(x)

]
= ∑

x
x2p(x)−∑

x
2µxp(x)+∑

x
µ2p(x)

= ∑
x

x2p(x)−2µ∑
x

xp(x)+µ2∑
x

p(x)

= ∑
x

x2p(x)−2µ2 +µ2 because∑xxp(x) = µ and∑x p(x) = 1

= ∑
x

x2p(x)−µ2.
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So now we have two methods of calculating variance. The first is affected by
rounding errors in the calculation ofµ, and also by rounding errors in the calculation
of the valuesp(x). The second method is more badly affected by rounding errors in
thep(x), and it can cause computer or calculator overflow ifX takes very large values;
however, the calculations are usually simpler.

Two further properties of expected value and variance can be used as a check on
your calculations.

• The expected value ofX always lies between the smallest and largest values
of X. (Can you prove this?)

• The variance ofX is never negative. (We will prove this in a little while.)
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