
MAS 108 Probability I

Notes 4 Autumn 2005

Conditional probability

Example I have four pens in my satchel; they are red, green, blue, and purple. I
sample two pens. LetA be the event that the first pen is red or green, andB the event
that the second pen is red or green.

We have seen that if the sampling is done with replacement thenP(A) = P(B) =
1/2 andP(A∩B) = 1/4. Informally this can be expressed as “If I know thatA has
happened thenP(B) = 1/2”. On the other hand, if the sampling is done without
replacement thenP(A) = P(B) = 1/2 but P(A∩B) = 1/6: in informal terms, “If I
know thatA has happened thenP(B) = 1/3”.

Conditional probability is a way of making precise the idea that the probability of
an event can appear to change if you have some extra information.

Let A be an event with non-zero probability, and letB be any event. Thecondi-
tional probability of B given Ais defined as

P(B | A) =
P(A∩B)

P(A)
.

Again I emphasise that this is the definition. If you are asked for the definition of
conditional probability, it is not enough to say “the probability ofB given thatA has
occurred”, although this is the best way to understand it. There is no reason why event
A should occur before eventB!

Note theverticalbar in the notation. This isP(B | A), notP(B/A) or P(B\A).
Note also that the definition only applies in the case whereP(A) is not equal to

zero, since we have to divide by it, and this would make no sense ifP(B) = 0.
To check the formula in our example:

with replacement P(B | A) =
P(A∩B)

P(A)
=

1/4
1/2

=
1
2
,

without replacement P(B | A) =
P(A∩B)

P(A)
=

1/6
1/2

=
1
3
.
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Conditional probability is used in two distinct ways:

(a) givenP(A) andP(A∩B), calculate the conditional probabilityP(B | A);

(b) givenP(A) andP(B | A), calculateP(A∩B) from the rule

P(A∩B) = P(A)×P(B | A).

Example Alice and Bob are going out to dinner. They toss a fair coin ‘best of three’
to decide who pays: if there are more heads than tails in the three tosses then Alice
pays, otherwise Bob pays.

Clearly each has a 50% chance of paying. The sample space is

S = {HHH,HHT,HTH,HTT,THH,THT,TTH,TTT},

and the events ‘Alice pays’ and ‘Bob pays’ are respectively

A = {HHH,HHT,HTH,THH},
B = {HTT,THT,TTH,TTT}.

They toss the coin once and the result is heads; call this eventE. How should we
now reassess their chances? We have

E = {HHH,HHT,HTH,HTT},

so

P(A | E) =
P(A∩E)

P(E)
=

P({HHH, HHT, THH})
1/2

=
3/8
1/2

=
3
4

while

P(B | E) =
P(B∩E)

P(E)
=

P({HTT})
1/2

=
1/8
1/2

=
1
4
.

Thus the new (conditional) probabilities that Alice and Bob pay for dinner are 3/4
and 1/4 respectively.

It may seem like a small matter, but you should be familiar enough with this for-
mula that you can write it down without stopping to think about the names of the
events. Thus, for example,

P(C | D) =
P(C∩D)

P(D)

if P(D) 6= 0.
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Example Two fair ten-sided dice are thrown, independently of each other. LetB be
‘doubles’ andC be ‘at least one is an odd number’. We have seen thatP(B) = 1/10,
P(C) = 3/4 andP(B∩C) = 1/20, so

P(at least one odd| doubles) = P(C | B) =
P(B∩C)

P(B)
=

1/20
1/10

=
1
2

;

thus if you know that you have doubles then you are less likely to have at least one
odd number than you would otherwise be—perhaps this is not surprising. On the other
hand,

P(doubles| at least one odd) = P(B |C) =
P(B∩C)

P(C)
=

1/20
3/4

=
1
15

;

this says that if you know that you have at least one odd number then you are less
likely to have doubles than you would otherwise be—perhaps this is more surprising.

There is a connection between conditional probability and independence:

Theorem 1 Let A andB be events withP(A) > 0 andP(B) > 0. Then the following
three statements are equivalent.

(i) A andB are independent.

(ii) P(B | A) = P(B).

(iii) P(A | B) = P(A).

Proof To prove that three conditions are equivalent, we shall prove that (iii)⇒ (i),
(i) ⇒ (ii), and (ii) ⇒ (iii). The we can deduce that any one of the conditions implies
both the others by following the ‘implies’ arrow (⇒) round.

(iii) ⇒ (i) We assume that (iii) is true. Then

P(A | B) = P(A) ⇒ P(A∩B)
P(B)

= P(A), by definition of conditional probability,

⇒ P(A∩B) = P(A)×P(B), by multiplying up byP(B),
⇒ A andB are independent, by definition of independence.

(i) ⇒ (ii) Now we assume that (i) is true. Then

A andB are independent⇒ P(A∩B) = P(A)×P(B), by definition of independence,

⇒ P(A∩B)
P(A)

= P(B), becauseP(A) 6= 0,

⇒ P(B | A) = P(B), by definition of conditional probability.
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(ii) ⇒ (iii) Finally we assume that (ii) is true. Then

P(B | A) = P(B) ⇒ P(A∩B)
P(A)

= P(B), by definition of conditional probability,

⇒ P(A∩B)
P(B)

= P(A), becauseP(B) 6= 0,

⇒ P(A | B) = P(A), by definition of conditional probability.

This theorem is most likely what people have in mind when they say ‘A andB are
independent means thatB has no effect onA’.

Genetics

Here is a simplified version of how genes code eye colour, assuming only two colours
of eyes.

Each person has two genes for eye colour. Each gene is either B or b. A child
receives one gene from each of its parents. The gene it receives from its father is one
of its father’s two genes, each with probability 1/2; and similarly for its mother. The
genes received from father and mother are independent.

If your genes are BB or Bb or bB, you have brown eyes; if your genes are bb, you
have blue eyes.

Example Suppose that John has brown eyes. So do both of John’s parents. His sister
has blue eyes. What is the probability that John’s genes are BB?

Solution John’s sister has genes bb, so one b must have come from each parent.
Thus each of John’s parents is Bb or bB; we may assume Bb. So the possibilities for
John are (writing the gene from his father first)

BB,Bb,bB,bb

each with probability 1/4. (For example, John gets his father’s B gene with probability
1/2 and his mother’s B gene with probability 1/2, and these are independent, so the
probability that he gets BB is 1/4. Similarly for the other combinations.)

Let X be the event ‘John has BB genes’ andY the event ‘John has brown eyes’.
ThenX = {BB} andY = {BB,Bb,bB}. The question asks us to calculateP(X |Y).
This is given by

P(X |Y) =
P(X∩Y)

P(Y)
=

1/4
3/4

= 1/3.
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Iterated conditional probability

The conditional probability of an eventC, given that bothA andB have occurred, is
justP(C | A∩B). Sometimes instead we just writeP(C | A,B). It is given by

P(C | A,B) =
P(C∩A∩B)

P(A∩B)
,

so
P(A∩B∩C) = P(C | A,B)P(A∩B).

Now we also have
P(A∩B) = P(B | A)P(A),

so finally (assuming thatP(A∩B) 6= 0), we have

P(A∩B∩C) = P(C | A,B)P(B | A)P(A).

This generalizes to any number of events:

Theorem 2 Let E1, . . . , En be events. If none of the probabilities involved is zero
then

P(E1∩E2∩·· ·∩En) =
P(E1)×P(E2 | E1)×P(E3 | E1∩E2)×·· ·×P(En | E1∩E2∩·· ·∩En−1).

Proof The proof is byinduction, which you may not have met before.

Step 1 (getting started) Whenn = 2, the statement is

P(E1∩E2) = P(E1)×P(E2 | E1),

which is true by definition ofP(E2 | E1).

Step 2 (inductive step)Now assume that the statement is true forn−1, so that

P(E1∩E2∩·· ·∩En−1) =
P(E1)×P(E2 | E1)×P(E3 | E1∩E2)×·· ·×P(En−1 | E1∩E2∩·· ·∩En−2). (∗)
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PutD = E1∩E2∩·· ·∩En−1. Then

P(E1∩E2∩·· ·∩En−1∩En)
= P(D∩En)
= P(D)×P(En | D) by definition ofP(En | D)
= P(E1∩E2∩·· ·∩En−1)×P(En | D)
= [P(E1)×P(E2 | E1)×P(E3 | E1∩E2)×·· ·×P(En−1 | E1∩E2∩·· ·∩En−2)]×P(En | D)

using (∗)

= P(E1)×P(E2 | E1)×P(E3 | E1∩E2)×·· ·×P(En | E1∩E2∩·· ·∩En−1),

so the statement is true forn.

Example There are 5 people in a room. Assuming that all months of the year are
equally likely for birthdays, what is the probability that the 5 people were all born in
different months of the year?

Solution Let E2 be the event “second person has a different birth month from the
first”, E3 = “third person has a different birth month from the first two”, and so on.
ThenP(E2) = 11/12. AlsoP(E3 | E2) = 10/12, so

P(E2∩E3) = P(E2)×P(E3 | E2) =
11
12

× 10
12

.

Similarly, P(E4 | E2∩E3) = 9/12 andP(E5 | E2∩E3∩E4) = 8/12 so

P(E2∩E3∩E4) = P(E2∩E3)×P(E4 | E2∩E3) =
11
12

× 10
12

× 9
12

and

P(all different) = P(E2∩E3∩E4∩E5) =
11
12

× 10
12

× 9
12

× 8
12

≈ 0.38.

A more complicated version of this argument gives the birthday paradox.
Thebirthday paradoxis the following statement:

If there are 23 or more people in a room, then the chances are better than
even that two of them have the same birthday.

Can you prove this?

6



Sampling revisited

In random sampling, we assume that, each time we choose, all objects left are equally
likely. In sampling with replacement all objects are available every time, so

P(r-th object isω) =
1
N

no matter what was chosen before. So ther-th object and thes-th object are indepen-
dent if r 6= s. Moreover,

P((ω1,ω2, . . . ,ωn)) =
1
N
× 1

N
×·· ·× 1

N
,

so all outcomes are equally likely.
In sampling without replacement,

P(r-th object isω | ω is already chosen) = 0,

P(r-th object isω | ω is not already chosen) =
1

N− r +1
.

So

P((ω1,ω2, . . . ,ωn)) = P(first is ω1)×P(second isω2 | first is ω1)
×P(third is ω3 | first is ω1 and second isω2)×·· ·

=
1
N
× 1

N−1
× 1

N−2
×·· ·× 1

N−n+1

for all orderedn-tuples of distinct elements, so again all outcomes are equally likely.

Example There are 3 wallets, 5 notebooks and 4 toy soldiers on the counter in a shop.
I choose 3 of these objects, one after the other, without replacement. LetA be ‘first is
a wallet’,B be ‘second is a wallet’, andC be ‘third is a toy soldier’.

Then

P(first two are both wallets) = P(A∩B) = P(A)×P(B | A) =
3
12

× 2
11

=
1
22

.

P(neither of the first two is a wallet)= P(A′∩B′)= P(A′)×P(B′ |A′)=
9
12

× 8
11

=
6
11

.

P(two wallets then a toy soldier)= P(A∩B∩C)= P(A∩B)×P(C |A∩B)=
1
22

× 4
10

=
1
55

.
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