
MAS 108 Probability I

Notes 3 Autumn 2005

Independence

Two eventsA andB are said to beindependentif

P(A∩B) = P(A)×P(B).

This is the definition of independence of events. If you are asked in an exam to
define independence of events, this is the correct answer. Do not say that two events
are independent if one has no influence on the other; andunder no circumstancessay
thatA andB are independent ifA∩B= /0 (this is the statement thatA andB are disjoint,
which is quite a different thing!) Also, do not ever say thatP(A∩B) = P(A)×P(B)
unless you have some good reason for assuming thatA andB are independent (see
below).

In general,don’t assume that two events are independentunless either

(a) they depend ondifferenttosses of a coin or rolls of a die; or

(b) you are told in the question to assume this!

Rather, you should calculate probabilities to see whether or not they are independent.
In general, it is always OK to assume that the outcomes of different tosses of a

coin, or different throws of a die, are independent. This holds even if the probabilities
are not all equally likely. We will see an example later.

Example If we toss a coin more than once, or roll a die more than once, then you
may assume that different tosses or rolls are independent. More precisely, if we roll
a fair six-sided die twice, then the probability of getting 4 on the first throw and 5 on
the second is 1/36, since we assume that all 36 combinations of the two throws are
equally likely. But(1/36) = (1/6) · (1/6), and the separate probabilities of getting 4
on the first throw and of getting 5 on the second are both equal to 1/6. So the two
events are independent. This would work just as well for any other combination.
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Example (a) I roll a fair 6-sided die. LetA be the event that the number is 3 or
smaller, andB the event that it is even. ThenA = {1,2,3}, B = {2,4,6}, A∩B = {2};
soP(A) = 1/2, P(B) = 1/2, andP(A∩B) = 1/6. So the events are not independent.

(b) I roll a fair 6-sided die twice. LetA be the event that the number on the first
roll is 3 or smaller, andB the event that the number on the second roll is even. These
events should be independent, since they depend on different rolls. Let us see. We
have:

A = {(1,1), . . . ,(1,6),(2,1), . . . ,(2,6),(3,1), . . . ,(3,6)},
B = {(1,2), . . . ,(6,2),(1,4), . . . ,(6,4),(1,6), . . . ,(6,6)},

A∩B = {(1,2),(1,4),(1,6),(2,2),(2,4),(2,6),(3,2),(3,4),(3,6),

P(A) = 18/36= 1/2, P(B) = 18/36= 1/2, P(A∩B) = 9/36= 1/4.

So the events are independent.

Example I have four pens in my satchel; they are red, green, blue, and purple. I
choose two pens with replacement. LetA be the event that the first pen is red or green,
andB the event that the second pen is red or green. AreA andB independent? The
sample space is

{RR, RG, RB, RP,
GR, GG, GB, GP,
BR, BG, BB, BP,
PR, PG, PB, PP},

and

A = {RR, RG, RB, RP, GR, GG, GB, GP}
B = {RR, RG,GR, GG, BR, BG, PR, PG}

A∩B = {RR, RG, GR, GG}.

ThusP(A) = 1/2, B(B) = 1/2 andP(A∩B) = 1/4 = P(A)×P(B) and so the events
are independent.

On the other hand, suppose that I samplewithout replacement. Then

S = {RG, RB, RP, GR, GB, GP, BR, BG, BP, PR, PG, PB}
A = {RG, RB, RP, GR, GB, GP}
B = {RG,GR, BR, BG, PR, PG}

A∩B = {RG, GR}.

Now we haveP(A) = P(B) = 1/2 but P(A∩B) = 1/6 6= P(A)×P(B) so the events
are not independent.
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Example Two fair ten-sided dice are thrown, independently of each other, so that

S = {(i, j) : 1≤ i ≤ 10, 1≤ j ≤ 10}

and every outcome has probability 1/100. LetA be ‘the first is 10’,B be ‘doubles’ and
C be ‘at least one is an odd number’. Is it obvious thatA andB should be independent
of each other? What aboutB andC?

Now,P(A) = P(B) = 1/10. The complementC′ of C is ‘both are even’, soP(C′) =
1/4 and thereforeP(C) = 3/4.

A∩B = {(10,10)}
B∩C = {(i, i) : i = 1, 3, 5, 7, 9},

soP(A∩B) = 1/100= P(A)×P(B) andA andB are independent. On the other hand,
P(B∩C) = 5/100= 1/20 6= P(B)×P(C) so B andC are not independent of each
other.

Mutual independence

This section is a bit technical. You will need to know the conclusions.
Suppose thatA, B andC are events. If all three pairs of events happen to be

independent, can we then conclude thatP(A∩B∩C) = P(A)×P(B)×P(C)? At first
sight this seems very reasonable; in Axiom 3, we only required all pairs of events to
be exclusive in order to justify our conclusion. Unfortunately it is not true . . .

Example In the example with two ten-sided dice, letD be ‘the second is 10’. You can
check thatA andD are independent of each other, and thatB andD are independent
of each other. We already know thatA andB are independent of each other. However,
A∩B = A∩D = B∩D so we know that if any two of these events occur then the third
must too. HereP(A∩B∩D) = 1/100 6= P(A)×P(B)×P(D).

Thus, the definition of mutual independence for three events must require more
than just the independence of each pair. We say that three eventsA, B, C aremutually
independentif

• each pair of events is independent;

• P(A∩B∩C) = P(A)×P(B)×P(C).

So, in the ten-sided dice example,A, B andD are not mutually independent.
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How do we extend this to any number of events? The main difficulty is in finding
a good notation! The correct definition runs as follows.

Let A1, . . . ,An be events. We say that these events aremutually independentif, for
everyt with 2≤ t ≤ n and all indicesi1, i2, . . . , it with 1≤ i1 < i2 < · · · < it ≤ n, we
have

P(Ai1 ∩Ai2 ∩·· ·∩Ait ) = P(Ai1)×P(Ai2)×·· ·×P(Ait ).

Sometimes, instead of saying “the eventsA1, . . . , An are mutually independent”,
we say “each event is independent of all the others”. This form of words has exactly
the same meaning.

You should not assume in general that events are mutually independent. You can
only assume this ifeither

(a) they depend ondifferenttosses of a coin or rolls of a die; or

(b) you are told in the question to assume this!

For example, if I toss a coin six times, the three events ‘same result on tosses 1
and 2’, ‘more heads than tails on tosses 3, 4 and 5’, and ‘heads on toss 6’ are mutually
independent.

Example A coin has probabilityp of coming down heads, and probabilityq of com-
ing down tails, whereq = 1− p. It is tossed three times, independently.

P(HTT) = P(1st is H)×P(2nd is T)×P(3rd is T), by independence,

= p×q×q = pq2.

Similarly, P(THT) = P(TTH) = pq2, soP(1 head and 2 tails in any order) = 3pq2.
In general, if the coin is tossedn times, the probability that it comes down heads
exactlyr times isnCr prqn−r .

For technical reasons, we do not usually defineA andB to be independent if either
of them has probability zero. You need not worry about this.

Properties of independence

Proposition If A andB are independent, thenA andB′ are independent.

I didn’t prove this in lectures. Can you prove it?

Corollary If A andB are independent, so areA′ andB′.

Apply the Proposition twice, first toA andB (to show thatA andB′ are indepen-
dent), and then toB′ andA (to show thatB′ andA′ are independent).
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More generally, if eventsA1, . . . , An are mutually independent, and we replace
some of them by their complements, then the resulting events are mutually indepen-
dent. We have to be a bit careful though. For example,A and A′ are not usually
independent!

Results like the following are also true, though we don’t stop to prove this.

Proposition Let eventsA, B, C be mutually independent. ThenA andB∩C are inde-
pendent, andA andB∪C are independent.

Stopping rules

Often an experiment consists of performing some action repeatedly until some condi-
tion is met.

Suppose that Carole takes a driving test. She is allowed to keep taking the test
until she passes. Of course, if she passes the test, she doesn’t need to take it again. So
the sample space is

S = {P, FP, FFP, FFFP . . .},
where, for example,FFP denotes the outcome that she fails twice and passes on her
third attempt. The sample space is infinite.

In Mathematics examinations we are not so liberal. You are allowed to take the
exam up to three times but no more. Now the sample space is

S = {P, FP, FFP, FFF}.

If all outcomes were equally likely, then your chance of eventually passing the
exam would be 3/4.

But it is unreasonable here to assume that all the outcomes are equally likely. For
example, you may be very likely to pass on the first attempt. Let us assume that the
probability that you pass the exam is 0.8. (By Proposition 1, your chance of failing
is 0.2.) Let us further assume that, no matter how many times you have failed, your
chance of passing at the next attempt is still 0.8; in other words, that the different
attempts are independent of each other. Then we have

P(P) = 0.8,

P(FP) = 0.2×0.8 = 0.16,

P(FFP) = 0.22×0.8 = 0.032,

P(FFF) = 0.23 = 0.008.

Thus the probability that you eventually pass isP({P, FP, FFP}) = 0.8+ 0.16+
0.032= 0.992. Alternatively, you eventually passunlessyou fail three times, so the
probability is 1−0.008= 0.992.
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A stopping ruleis a rule of the type described here, namely, continue the experi-
ment until some specified occurrence happens.

The simplest kind of stopping rule is ‘perform the experiment a fixed number of
times’. For example, if I toss a fair coin three times, independently, the sample space
is

S = {HHH,HHT,HTH,HTT,THH,THT,TTH,TTT}.

If the coin is fair, then independence shows that all outcomes are equally likely, with
probability 1/8.

The experiment may potentially be infinite.
For example, if you toss a coin repeatedly until you obtain heads, the sample space

is
S = {H,TH,TTH,TTTH, . . .}

since in principle you may get arbitrarily large numbers of tails before the first head.
(We have to allow all possible outcomes.)

In the Mathematics exam, the rule is ‘stop if either you pass or you have taken the
exam three times’. This ensures that the sample space is finite. The analogous thing
for coins would be ‘stop when you get heads, or when you have tossed three times’,
and the sample space is

S = {H,TH,TTH,TTT}.

The outcomes are not equally likely; we would haveP(H) = 1/2, P(TTH) = 1/4,
P(TTH) = P(TTT) = 1/8.

Another rule is ‘best of three’. If you toss a coin with this rule, then if two heads
(or two tails) come up, the experiment can stop since the result is decided. The sample
space is

S = {HH,HTH,HTT,THH,THT,TT},

andP(HH) = P(TT) = 1/4 while the other outcomes all have probability 1/8.
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Networks and reliability

Often we can assume that different electrical components, or different pipes in a water
system, or different parts of a transport network, behave independently. Here are some
examples.

Example Connections in parallel
Two electrical components are connected in
parallel. Current flows so long as at least one
component is working. The probability that
componentA fails is 1/10 and the probability
thatB fails is 1/20, independently ofA. What
is the probability that current flows?

A��
��

��
��

B

At risk of some confusion, we use theletters AandB for theevents‘componentA
works’ and ‘componentB works’ respectively. LetY be the event that current flows.
Now, current flows ifeither Ais workingor B is working, soY = A∪B. Therefore

P(Y) = P(A∪B) = P(A)+P(B)−P(A∩B), by inclusion-exclusion,

= P(A)+P(B)−P(A)×P(B), becauseA andB are independent,

=
9
10

+
19
20

− 9
10

× 19
20

=
199
200

.

Alternatively, we could argue thatY′ = A′∩B′. Then independence ofA′ andB′ gives
P(Y′) = P(A′)×P(B′) = (1−P(A))× (1−P(B)) = 1/200, soP(Y) = 199/200.

There is often more than one way to tackle such a problem. The important thing
is to be clear about where you are using independence and where you are using other
rules such as inclusion-exclusion.

Example Connections in series

When electrical components are con-
nected in series, current flows only if
both are working. Suppose thatA and
B work independently, as above.

��
��

A ��
��

B

P(Y) = P(A∩B) = P(A)×P(B), by independence,

=
9
10

× 19
20

=
171
200

.
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Example From Assignment 3

You are at Stepney Green station and you
want to get to Liverpool Street station. You
can either go directly by the Hammersmith
and City line, or you can take the District
line to Mile End followed by the Central
line to Liverpool Street. For simplicity, let
us assume that there are no other Under-
ground lines.

��
��

D ��
��

C

��
��

H

��
��
LSt��

��
SGn

The probability that the Hammersmith and City line is working is 0.9; the proba-
bility that the District line is working is 0.8; and the probability that the Central line
is working is 0.75. Assume that each line is independent of the others. What is the
probability that you can get to Liverpool Street by Underground train?

Write D for the event ‘the District line is working’, and so on. Then the event that
we want is(D∩C)∪H. Now

P((D∩C)∪H)) = P(D∩C)+P(H)−P(D∩C∩H)
(by Inclusion-Exclusion)

= P(D)×P(C)+P(H)−P(D)×P(C)×P(H)
(by mutual independence)

= (0.8)× (0.75)+(0.9)− (0.8)× (0.75)× (0.9)
= 0.96.

There is a trap here which you should take care to avoid. You might be tempted to
say

(D∩C)∪H = (D∪H)∩ (C∪H),

by the distributive law; then calculate using inclusion-exclusion and independence that

P(D∪H) = P(D)+P(H)−P(D)P(H) = 0.8+0.9− (0.8)× (0.9) = 0.98,

P(C∪H) = P(C)+P(H)−P(C)P(H) = 0.75+0.9− (0.75)× (0.9) = 0.975,

and finally conclude, using independence, that

P((D∪H)∩ (C∪H)) = (0.98)× (0.975) = 0.9555.

This is correct right up to the last step, where we have been sloppy about using in-
dependence. It doesnot follow from what we are given thatD∪H andC∪H are
independent!

8



Example Based on a question from the 1999 exam.

Water flows from left to right in the pipework
shown in the diagram so long as it can find
an unblocked route from left to right. Block-
ages occur independently in the three named
pipes. The probability that pipeA is blocked
is 1/4; the probability that pipeB is blocked
is 2/5; and the probability that pipeC is
blocked is 1/6.

��
��

A

��
��

B

��
��

C

Find the probability that water flows.
Let A denote the event that pipeA is unblocked, and similarly forB andC. Then

P(A) = 3/4, P(B) = 3/5 andP(C) = 5/6. Now

P(water flows) = P[(A∪B)∩C]
= P(A∪B)×P(C),

becauseA∪B is independent ofC,

= [P(A)+P(B)−P(A∩B)]×P(C),
by inclusion-exclusion,

= [P(A)+P(B)−P(A)P(B)]×P(C),
becauseA is independent ofB,

=
(

3
4

+
3
5
− 9

20

)
×

(
5
6

)
=

18
20

× 5
6

=
3
4
.
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