
MAS 108 Probability I

Notes 12 Autumn 2005

Conditional random variables

Remember that theconditional probabilityof eventA given eventB is P(A | B) =
P(A∩B)/P(B).

Suppose thatX is a discrete random variable. Then the conditional probability that
X takes a certain valuex, givenB, is just

P(X = x | B) =
P(B holds andX = x)

P(B)
.

This defines the probability mass function of theconditional random variable X| B,
called “X givenB”.

So we can, for example, talk about theconditional expectation

E(X | B) = ∑
x

xP(X = x | B).

Example I throw two fair six-sided dice independently. LetX be the number showing
on the first die, and letC be the event that at least one number showing is odd. In
Notes 3 we saw thatP(C) = 3/4.

If i is odd and 1≤ i ≤ 6 then

P(X = i |C) =
P(X = i andC)

P(C)
=

P(X = i)
P(C)

=
1/6
3/4

=
2
9
.

On the other hand, ifi is even and 1≤ i ≤ 6 then

P(X = i |C) =
P(X = i andC)

P(C)
=

P(X = i and second is odd)
P(C)

=
(1/6)× (1/2)

3/4
=

1
9
.

Therefore the p.m.f. forX |C is

i 1 2 3 4 5 6

P(X = i |C) 2
9

1
9

2
9

1
9

2
9

1
9

andE(X |C) = 10/3.
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Example Suppose that I go fishing all day, and that the numberX of fish that I catch
in a day has the Poisson(λ) distribution. Supopose that you know that I have caught
at least one fish. Then, ifm 6= 0 we get

P(X = m | X 6= 0) =
P(X = m)
P(X 6= 0)

=
e−λ λm

m!

1−e−λ =
λm

m!(eλ−1)
;

of course, the probability is 0 ifm= 0.

Now the eventB in X | B might itself be defined by another random variable; for
example,B might be the event thatY takes the valuey. In this case, we have

P(X = x |Y = y) =
P(X = x, Y = y)

P(Y = y)
.

In other words, we have taken the column of the joint p.m.f. table ofX andY corre-
sponding to the valueY = y. The sum of the entries in this column is justP(Y = y),
one entry in the marginal distribution ofY. We divide the entries in the column by this
value to obtain a new distribution ofX (whose probabilities add up to 1).

Example I have two red pens, one green pen, and one blue pen, and I choose two
pens without replacement. LetX be the number of red pens that I choose andY the
number of green pens. Then the joint p.m.f. ofX andY is given by the following table:

Y
0 1

0 0 1
6

X 1 1
3

1
3

2 1
6 0

In this case, the conditional distributions ofX corresponding to the two values of
Y are as follows:

a 0 1 2

P(X = a |Y = 0) 0 2
3

1
3

a 0 1 2

P(X = a |Y = 1) 1
3

2
3 0

We have

E(X |Y = 0) =
4
3
, E(X |Y = 1) =

2
3
.

In Theorem 1, we saw that independence of events can be characterised in terms
of conditional probabilities:A andB are independent if and only ifP(A | B) = P(A).
A similar result holds for independence of random variables.
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Proposition Let X andY be discrete random variables. ThenX andY are independent
of each other if and only if, for all valuesx andy of X andY respectively, we have

P(X = x |Y = y) = P(X = x).

This is obtained by applying Theorem 1 to the eventsX = x andY = y. It can be
stated in the following way:

X andY are independent if and only if the theconditionalp.m.f. ofX | (Y = y)
is equal to themarginalp.m.f. ofX, for every valuey of Y.

In general, these distributions willnot be the same!

If we know theconditional expectationof X for all values ofY, we can find the
expected value ofX. This is what theconditional expectation theoremtells us.

Theorem 11 (Theorem of Conditional Expectation)LetA1, . . . ,An be mutually ex-
clusive events whose union is the whole sample space, withP(Ai) > 0 for i = 1, . . . ,n.
If X is a random variable defined on the same sample space then

E(X) = ∑
i

P(Ai)E(X | Ai).

Proof

E(X) = ∑
x

xP(X = x)

= ∑
x

x

[
n

∑
i=1

P(Ai)P(X = x | Ai)

]
by the Theorem of Total Prob-
ability for each event “X = x”

= ∑
x

n

∑
i=1

P(Ai)xP(X = x | Ai)

=
n

∑
i=1

∑
x

P(Ai)xP(X = x | Ai) rearranging the order of sum-
mation

=
n

∑
i=1

P(Ai)
[
∑
x

xP(X = x | Ai)
]

=
n

∑
i=1

P(Ai)E(X | Ai).

In the above example, we have

E(X)= E(X |Y = 0)P(Y = 0)+E(X |Y = 1)P(Y = 1)= (4/3)×(1/2)+(2/3)×(1/2)= 1.
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Example A bottle of liquid contains an unknown number of infectious units. The
scientists want to know how many. This is how they try to find out. First, they mix
the liquid thoroughly and divide it into 15 equal portions, calledaliquots. An aliquot
is said to beinfectiousif it contains any of the infectious units. Then five aliquots are
chosen at random. Each chosen aliquot is injected into one animal. If the aliquot is
infectious then the animal will become ill; otherwise the animal remains healthy. The
scientists count how many of the five animals become ill. LetX be the number of ill
animals.

Suppose that the original bottle of liquid contains exactly three germs (infectious
units). When the liquid is mixed and divided into aliquots, each infectious unit is
equally likely to end up in any of the fifteen aliquots, independently of all the other
infectious units. FindE(X).

Solution Let

A1 = “exactly one aliquot is infectious”

A2 = “exactly two aliquots are infectious”

A3 = “exactly three aliquot are infectious”.

For each aliquot, the probabilty that all three germs end up in it is(1/15)3. There are
15 aliquots, so

P(A1) = 15×
(

1
15

)3

=
1

225
.

There are15C3 ways of choosing three aliquots to be infected. For each of these ways
there are 3! ways of matching the order of the germs to the order of the aliquots. Hence

P(A3) = 15C3×3!×
(

1
15

)3

=
182
225

.

By subtraction,P(A2) = 42/225.
Now, randomly choosing five aliquots from 15 when a certain number of the

aliquots is infectious gives us a hypergeometric random variable for the number of
infected animals. ThusX | A1 ∼ Hg(5,1,15) soE(X | A1) = 5/15= 1/3. Similarly,
X | A2 ∼ Hg(5,2,15) soE(X | A2) = (5×2)/15= 2/3 andX | A3 ∼ Hg(5,3,15) so
E(X | A3) = (5×3)/15= 1. Therefore

E(X) =
1

225
× 1

3
+

42
225

× 2
3

+
182
225

×1 =
631
675

.
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Example Here is another example. Suppose that I roll a fair die with faces numbered
from 1 to 6. If the number shown isn, I then toss a fair coinn times and count the
number of heads. What is the expected value of the number of heads?

Let N be the random number shown on the die, andX the number of heads. It
is possible to calculate the p.m.f. ofX directly, though it is quite a lot of work. For
example, what is the probability thatX = 5? This can only occur if eitherN = 5 and
we get heads five times (with probability(1/6)× (1/32), or if N = 6 and we get five
out of six heads (with probability(1/6)× (6C5× (1/64)), total 1/48. When we have
done all these laborious calculations, we can findE(X) directly.

However, the conditional expectation theorem makes it much easier. If the number
on the die isn, thenX is a binomial random variable Bin(n,1/2), with expected value
n/2. That is,E(X | N = n) = n/2. By Theorem 11,

E(X) = E(X | N = 1)P(N = 1)+ · · ·+E(X | N = 6)P(N = 6)

=
1
2
· 1
6

+ · · ·+ 6
2
· 1
6

=
21
2
· 1
6

=
7
4
.

Mean and variance of geometric

Let us revisit the geometric random variable and calculate its expected value and vari-
ance. Recall the situation: I have a coin with probabilityp of showing heads; I toss
it repeatedly until heads appears for the first time;X is the number of tosses. More
generally, we continue with independent Bernoulli trials until the first success.

Let Sbe the event that the first trial is a success. IfSoccurs then we stop then and
there; soX = 1, and we haveE(X | S) = 1. On the other hand, ifSdoes not occur then
the sequence of trials from that point on has the same distribution as the originalX; so
E(X | S′) = 1+E(X) (the 1 counting the first trial). So

E(X) = P(S)E(X | S)+P(S′)E(X | S′)
= p×1+(1− p)× (1+E(X)).

Rearranging this equation, we find thatE(X) = 1/p, confirming our earlier value.
Similarly,

E(X2) = P(S)E(X2 | S)+P(S′)E(X2 | S′).
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If Soccurs thenX = 1 soX2 = 1. If not, putY = X−1, so thatY ∼Geom(p). Then

E(X2 | S′) = E((Y +1)2) = E(Y2)+2E(Y)+1 = E(X2)+
2
p

+1.

Substitution gives

E(X2) = p×1+(1− p)×
(

E(X2)+
2
p

+1

)
,

which can be rearranged to giveE(X2) = (2− p)/p2. Then

Var(X) = E(X2)− (E(X))2 =
2− p

p2 − 1
p2 =

1− p
p2 ,

as we found before.

Two continuous random variables

If X andY are continuous random variable defined on the same sample space, they
have ajoint probability density function fX,Y(x,y) such that

P
(
(X,Y) ∈ some regionA of R2

)
=

Z Z
(x,y)∈A

fX,Y(x,y)dxdy.

Since probabilities are positive, we havefX,Y(x,y) ≥ 0 for all realx andy. Putting
A = R2 gives Z ∞

−∞

Z ∞

−∞
fX,Y(x,y)dxdy = 1.

It can also be shown that ifδx andδy are small then

P(x≤ X ≤ x+δx andy≤Y ≤ y+δy)≈ fX,Y(x,y)δxδy.

The joint cumulative distribution function FX,Y is given by

FX,Y(x,y) = P(X ≤ x andY ≤ y) =
Z y

−∞

Z x

−∞
fX,Y(t,u)dt du.

The marginal probability density functionsare obtained by integrating over the
other variable:

fX(x) =
Z ∞

−∞
fX,Y(x,y)dy;

fY(y) =
Z ∞

−∞
fX,Y(x,y)dx.
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If g is a real function of two variables and ifX andY have a joint continuous
distribution then

E(g(X +Y)) =
Z ∞

−∞

Z ∞

−∞
g(x,y) fX,Y(x,y)dxdy.

Theorem 7 (E(X +Y) = E(X)+ E(Y)) still holds; the proof uses integration in-
stead of summation.

For continuous random variables,P(X = x) = P(Y = y) = 0, so we have to adapt
the definition of independence. We say thatX andY areindependentof each other if
fX,Y(x,y) = fX(x) fY(y) for all realx andy.

If X andY are independent of each other then

P(x1 ≤ X ≤ x1 andy1 ≤Y ≤ y2) =
Z y2

y1

Z x2

x1

fX,Y(x,y)dxdy

=
Z y2

y1

Z x2

x1

fX(x) fY(y)dxdy

=
Z y2

y1

fY(y)
[Z x2

x1

fX(x)dx

]
dy

=
Z y2

y1

fY(y)P(x1 ≤ X ≤ x2)dy

= P(x1 ≤ X ≤ x2)
Z y2

y1

fY(y)dy

= P(x1 ≤ X ≤ x2)P(y1 ≤Y ≤ y2)

so the events “x1 ≤ X ≤ x2” and “y1 ≤Y ≤ y2” are independent of each other.
The following hold for joint continous random variables as well as for joint discrete

random variables.

Theorem 8 (X and Y independent=⇒ E(XY) = E(X)E(Y)) The proof uses integra-
tion instead of summation.

Definition of covariance This uses justE, so is unchanged.

Theorem 9 (properties of covariance)Unchanged.

Definition and propeties of correlation Unchanged.

Theorem 10 and its corollary (variance ofaX+bY) Unchanged.

Theorem 11 (Theorem of Conditional Expectation)The proof uses integration in-
stead of summation.
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The definition of conditional random variables likeX | Y = y must be different,
becauseP(Y = y) = 0. If X andY have a joint continuous distirbution then we define
the conditional random variableX |Y = y to have probability density function

fX|Y=y(x) =
fX,Y(x,y)

fY(y)

so long asfY(y) 6= 0. Similarly, if fX(x) 6= 0 then the conditional random variable
Y | X = x is defined to have probability density function

fY|X=x(y) =
fX,Y(x,y)

fX(x)
.

If X andY are independent of each other then the conditional distributions are equal
to the marginal distributions.
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