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Two discrete random variables

If X andY are discrete random variables defined on the same sample space, then events
such as
“X=xandY =y’

are well defined. Theint distributionof X andY is a list of the probabilities
Px.y (X,y) = P(X =xandY =vy)

for all values ofx andy that occur. The list is usually shown as a two-way table. This
table is called th@int probability mass functioof X andY. We abbreviatex y (X, )
to p(x,y) if X andY can be understood from the context.

Example (Muffins: part 1) | have a bag containing 5 chocolate-chip muffins, 3 blue-
berry muffins and 2 lemon muffins. | choose three muffins from this bag at random.
Let X be the number of lemon muffins chosen ande the number of blueberry
muffins chosen.

We calculate the values of the joint probablity mass function. First note.fhat
10C; = 120. Then

. °Cz 10
P(X =0 andY = 0) = P(3 chocolate-chip are chosea 120~ 120
P(X=0andY =1) = P(1 blueberry and 2 chocolate chip are chgsen
3C1x°C, 30

120 120




The other values are found by similar calculations, giving the following table.

Values ofY
0 1 2 3
10 30 15 1
Values| 0| 155 | 120 | 120 | 120
20 30 6
of X | 1|5 | 120 | 0| O
5 3
2 55 10| 0] 0

Of course, we check that the probabilities in the table add up to 1.

To obtain the distributions oK andY individually, find the row sums and the

column sums: these give their probability distributions. Tharginal probability
mass function p of X is the list of probabilities

Px(X) =P(X=X) =% px(XY)
y

for all values ofx which occur. Similarly, the marginal probability mass functipn
of Y is given by

pr(y) =P(Y =y) = pxx(XY).

The distributions oKX andY are said to benarginalto the joint distribution. They are
just ordinary distributions.

Example (Muffins: part 2) Here the marginal p.m.f. of is

ylol1]2]3
pY(y)‘1350‘16_30‘12210‘1%0

ThereforeE(X) = 3/5 andE(Y) = 9/10.

We can define events in terms ¥fandY, suchas X <Y”"or“X+Y =3". To

find the probability of such an event, find the probability of the set of all pairng)
for which the statement is true.

We can also define new random variables as functionsaridy .



Proposition 10 If g is a real function of two variables then

E(9(X,Y)) =3 > 9(xy)pxy(xy).
Xy

The proof is just like the proof of Proposition 8.

Example (Muffins: part 3) PutU = X +Y andV = XY. Then

30 15 1 20 30 6 5 3
3
= E:E(X)+E(Y).
However,
30 6 3 2
E(V)_1x1—20+2>< 20+2 120 c E(X)E(Y).

Theorem 7 (a) E(X+Y)=E(X)+E(Y) always.
(b) E(XY) is not necessarily equal B X)E(Y).
Proof (a)
EX+Y) = 5 > X+y)pxy(xy) by Proposition 10
Xy

_ 22xmﬂnw+zzymxmw
Xy

x> Pxy(XY) +Zyszv X,Y)
y

X
= DX+ > ypr(y)
X y
= EX)+E().
(b) A single counter-example is all that we need. In the muffins example we saw

thatE(XY) #E(X)E(Y). m

Independence

Random variableX andY defined on the same sample space are defined ittdiee
pendenbf each other if the events(‘= x" and “Y =y’ are independent for all values
of x andy; that is

Px v (X,Y) = px(X)py(Y) for all x andy.
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Example (Muffins: part 4) HereP(X = 0) = 7/15 andP(Y = 0) = 35/120 but

10 , 7 35
— F —x

P(X=0andY =0) = 120;& 15 %120~ P(X=0)P(Y =0),
so X andY are not independent of each other. Note that a single pair of values of
andy where the probabilities do not multiply is enough to show andY are not

independent.

On the other hand, if I roll a die twice, antlandY are the numbers that come up
on the first and second throws, thérandY will be independent, even if the die is not
fair (so that the outcomes are not all equally likely).

If we have more than two random variables (for examfl¥, Z), we say that they
aremutually independerif the events that the random variables take specific values
(for exampleX = a,Y = b, Z = ¢) are mutually independent.

Theorem 8 If X andY are independent of each other tHefXY) = E(X)E(Y).
Proof

E(XXY) = > > xymy(xy)
Xy

I
7

2xyg<(x) py (Y) if X andY are independent
y

ZXIOX(X)] [;yp«(WI

X

X)E(Y). m

I
1

m

Note that the converse is not true, as the following example shows.

Example Suppose thaX andY have the joint p.m.f. in this table.

Values ofY
-1/0| 1
Values| 0| 0 [3| O
of X |1| 2 (0] %
The marginal distributions are
x|0]1]
1)1
Px (X ‘ 3 ‘ 3 ‘



and

y|-1/0]
Wl zlz]
ThereforeP(X =0andY =1)=0 butP(X =0)P

not independent of each other. HoweefX) =1/2 an
while

01
111
2|1
(Y =1) =1 x 7 # 0 soX andY are
Y)=0soE(X)E(Y)=0,

E(XY):—lx}—kOx}—i—lx

ndE
1
4 2 Z_O’

SOE(XY) = E(X)E(Y).

Covariance and correlation

A measure of the joint spread of andY is the covarianceof X andY, which is
defined by

Cov(X,Y) = E (X —kx) (Y — ).
wherepx = E(X) andpy = E(Y).
Theorem 9 (Properties of covariance) (a) CouX,X) = Var(X).
(b) CouX,Y) = E(XY)—E(X)E(Y).
(c) If ais a constant then CgaX,Y) = Cov(X,aY) = aCov(X,Y).
(d) If bis constant then CdX,Y +b) = Cov(X +b,Y) = Cov(X.Y).
(e) If X andY are independent, then CX,Y) = 0.

Proof (@) This follows directly from the definition.
(b)

Cov(X,Y) = E((X—x)(Y—Hh))

(
E (XY — pxY — by X + Hix v )

= E(XY)+E(—pxY)+E(—pvyX) + E(uxpy) by Theorem 7(a)
= E(XY)—pxE(Y)—wE(X)+pxpy by Theorem 4
= E(XY)—EXE(Y) —E(Y)E(X) +E(X)E(Y)

E(XY) —E(X)E(Y).



(c) From part (b), CotaX,Y)=E(aXY)—E(aX)E(Y). From Theorem 4k (aXY) =
aE(XY) andE(aX) = aE(X). Therefore

Cov(aX,Y) =aE(XY)—aE(X)E(Y)=a(E(XY)—-E(X)E(Y)) =aCov(X,Y).

(d) Theorem 4 shows th&(Y +b) = E(Y)+b, so we haveY +b) —E(Y +b) =
Y —E(Y). Therefore

Cov(X,Y+b) = EX—EX))(Y+b—E(Y+b))
= E(X—EX))(Y—E(Y)) =Cov(X,Y).

(e) Frompart(b), CofX,Y)=E(XY)—E(X)E(Y). Theorem 8 shows th&(XY) —
E(X)E(Y) =0 if X andY are independent of each otherm

The covariance oK andY is the product of the distance &f from its mean and
the distance of from its mean. Therefore, K — px andY — py tend to be either both
postive or both negative then Co¢,Y) is positive. On the other hand, X — px and
Y — Yy tend to have opposite signs then C¥VY) is negative.

If Var(X) or Var(Y) is large then CoiX,Y) may also be large; in fact, multiply-
ing X by a constana multiplies VarfX) by a> and CoyX,Y) by a. To avoid this
dependence on scale, we define tberelation coefficientcorrn(X,Y), which is just a
“normalised” version of the covariance. It is defined as follows:

Cov(X,Y)

cormX,Y) = Var(X) Var(Y)

The point of this is the first and last parts of the following theorem.

Theorem (Properties of correlation) Let X andY be random variables. Then
(a)—1<corr(X,Y) <1,
(b) if X andY are independent, then cOX,Y) = 0;

(c) if Y = mX+ c for some constants = 0 andc, then cor(X,Y) =1 if m> 0, and
corr(X,Y) = —1if m< 0; this is the only way in which cofKX,Y) can be equal
to+1;

(d) corr(X,Y) is independent of the units of measurement in the sense tXaoif
Y is multilpied by a constant, or has a constant added to it, thef>ofy is
unchanged.



The proof of the first part won't be given here. But note that this is another check
on your calculations: if you calculate a correlation coefficient which is bigger than 1
or smaller than-1, then you have made a mistake. Part (b) follows immediately from
part (e) of the preceding theorem.

For part (c), suppose that= mX+c. Let Var(X) = a. Now we just calculate
everything in sight.

Var(Y) = Var(mX+c) = Var(mX) = n? Var(X) = nfa

Cov(X,Y) = Cov(X,mX+c) = Cov(X,mX) = mCoVv(X,X) = ma

corrX,Y) = Cov(X,Y)/+/Var(X)Var(Y)

= ma/vVmla?
{—1—1 if m>0,
-1 ifm<O.

The proof of the converse will not be given here.
Part (d) follows from Theorems 4, 5 and 9.

Thus the correlation coefficient is a measure of the extent to which the two vari-
ables are linearly related. It is1 if Y increases linearly witlX; O if there is no linear
relation between them; andl if Y decreases linearly asincreases. More generally,

a positive correlation indicates a tendency for largevalues to be associated with
largerY values; a negative value, for smallérvalues to be associated with larger
Y values.

We call two random variableX andY uncorrelatedf Cov(X,Y) = 0 (in other

words, if cor(X,Y) = 0). The preceding theorem and example show that we can say:

Independent random variables are uncorrelated, but uncorrelated random
variables need not be independent.

Example In some years there are two tests in the Probability class. We can take as
the sample space the set of all students who take both tests, and choose a student at
random. PuX(s) = the mark of studergon Test 1 antf (s) = the mark of studers

on Test 2. We would expect a student who scores better than average on Test 1 to do
S0 again on Test 2, and one who scores worse than average to do so again on Test 2,
so there should be a positive correlation betw&eandY. However, we would not

expect the Test 2 scores to be perfectly predictable as a linear function of the Test 1
scores. The marks for one particular year are shown in Figure 1. The correlation is
0.69 to 2 decimal places.
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Figure 1: Marks on two Probability tests



Theorem 10 If X andY are random variables amdandb are constants then

Var(aX + bY) = a®Var(X) + 2abCov(X,Y) + b?Var(Y).

Proof First,
E(aX+bY) = E(aX)+E(bY) by Theorem 7
= aE(X)+DbE(Y) by Theorem 4
= apx + bpy.
Then

Var(aX+bY) = E[(aX+bY)—E(aX+bY))? by definition of variance

= E[aX+bY —auy — buy]?

= E[a(X —px)+b(Y —py)]?

= E[a®(X —px)?+2ab(X — i) (Y — by) +b*(Y — by )?]

= E[a’(X —x)%] +E[2ab(X — px) (Y — iv)] + E[0%(Y — )]
by Theorem 7

= @E[(X —px)?]+2abE[(X — kx) (Y — py)] + BPE[(Y — by )]
by Theorem 4

= a?Var(X)+2abCov(X,Y) +b?Var(Y). =

Corollary If X andY are independent, then
(@) VanX+Y) = Var(X) + Var(Y).
(b) Var(X —Y) = Var(X) + Var(Y).



Mean and variance of binomial

Here is the third way of finding the mean and variance of a binomial distribution,
which is more sophisticated than the methods in Notes 8 yet easier than both. If
X ~ Bin(n, p) thenX can be thought of as the the number of successesrintually
independent Bernoulli trials, each of which has probabpityf success.

Fori=1, ...,n, let X; be the number of successes at tth trial. ThenX; ~
Bernoulli(p), SOE(X;) = pand VaskX;) = pg, whereqg = 1— p. Moreover, the random
variablesXy, ..., X, are mutually independent.

By Theorem 7,

E(X) = E(X1)+E(X2)+--+E(X)
%,—/
n times
= np
By the Corollary to Theorem 10,

Var(X) = Var(Xy)+ Var(X2)+---+ Var(Xy)
= pPa+pg+---+pg

n times

= npg

Note that if alsoY ~ Bin(m, p), andX andY are independent of each other, then
Y = Xnt1+ -+ Xntm, WhereXni 1, . .., Xnrm are mutually independent Bernouh)
random variables which are all independenkgf. . ., X, SO

X+Y =Xy 4+ Xn+ X1+ Xotm,

which is the sum oh+ m mutually independent Bernoulp) random variables, so
X+Y ~ Bin(n+m, p).
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