
MAS 108 Probability I

Notes 11 Autumn 2005

Two discrete random variables

If X andY are discrete random variables defined on the same sample space, then events
such as

“X = x andY = y”

are well defined. Thejoint distributionof X andY is a list of the probabilities

pX,Y(x,y) = P(X = x andY = y)

for all values ofx andy that occur. The list is usually shown as a two-way table. This
table is called thejoint probability mass functionof X andY. We abbreviatepX,Y(x,y)
to p(x,y) if X andY can be understood from the context.

Example (Muffins: part 1) I have a bag containing 5 chocolate-chip muffins, 3 blue-
berry muffins and 2 lemon muffins. I choose three muffins from this bag at random.
Let X be the number of lemon muffins chosen andY be the number of blueberry
muffins chosen.

We calculate the values of the joint probablity mass function. First note that|S |=
10C3 = 120. Then

P(X = 0 andY = 0) = P(3 chocolate-chip are chosen) =
5C3

120
=

10
120

.

P(X = 0 andY = 1) = P(1 blueberry and 2 chocolate chip are chosen)

=
3C1× 5C2

120
=

30
120

.
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The other values are found by similar calculations, giving the following table.

Values ofY

0 1 2 3

Values 0 10
120

30
120

15
120

1
120

of X 1 20
120

30
120

6
120 0

2 5
120

3
120 0 0

Of course, we check that the probabilities in the table add up to 1.

To obtain the distributions ofX andY individually, find the row sums and the
column sums: these give their probability distributions. Themarginal probability
mass function pX of X is the list of probabilities

pX(x) = P(X = x) = ∑
y

pX,Y(x,y)

for all values ofx which occur. Similarly, the marginal probability mass functionpY

of Y is given by
pY(y) = P(Y = y) = ∑

x
pX,Y(x,y).

The distributions ofX andY are said to bemarginalto the joint distribution. They are
just ordinary distributions.

Example (Muffins: part 2) Here the marginal p.m.f. ofX is

x 0 1 2

pX(x) 7
15

7
15

1
15

and the marginl p.m.f. ofY is

y 0 1 2 3

pY(y) 35
120

63
120

21
120

1
120

.

ThereforeE(X) = 3/5 andE(Y) = 9/10.

We can define events in terms ofX andY, such as “X < Y” or “ X +Y = 3”. To
find the probability of such an event, find the probability of the set of all pairs(x,y)
for which the statement is true.

We can also define new random variables as functions ofX andY.
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Proposition 10 If g is a real function of two variables then

E(g(X,Y)) = ∑
x

∑
y

g(x,y)pX,Y(x,y).

The proof is just like the proof of Proposition 8.

Example (Muffins: part 3) PutU = X +Y andV = XY. Then

E(U) = 1× 30
120

+2× 15
120

+3× 1
120

+1× 20
120

+2× 30
120

+3× 6
120

+2× 5
120

+3× 3
120

=
3
2

= E(X)+E(Y).

However,

E(V) = 1× 30
120

+2× 6
120

+2× 3
120

=
2
5
6= E(X)E(Y).

Theorem 7 (a) E(X +Y) = E(X)+E(Y) always.

(b) E(XY) is not necessarily equal toE(X)E(Y).

Proof (a)

E(X +Y) = ∑
x

∑
y

(x+y)pX,Y(x,y) by Proposition 10

= ∑
x

∑
y

xpX,Y(x,y)+∑
x

∑
y

ypX,Y(x,y)

= ∑
x

x∑
y

pX,Y(x,y)+∑
y

y∑
x

pX,Y(x,y)

= ∑
x

xpX(x)+∑
y

ypY(y)

= E(X)+E(Y).

(b) A single counter-example is all that we need. In the muffins example we saw
thatE(XY) 6= E(X)E(Y).

Independence

Random variablesX andY defined on the same sample space are defined to beinde-
pendentof each other if the events “X = x” and “Y = y” are independent for all values
of x andy; that is

pX,Y(x,y) = pX(x)pY(y) for all x andy.
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Example (Muffins: part 4) HereP(X = 0) = 7/15 andP(Y = 0) = 35/120 but

P(X = 0 andY = 0) =
10
120

6= 7
15
× 35

120
= P(X = 0)P(Y = 0),

so X andY are not independent of each other. Note that a single pair of values ofx
andy where the probabilities do not multiply is enough to show thatX andY are not
independent.

On the other hand, if I roll a die twice, andX andY are the numbers that come up
on the first and second throws, thenX andY will be independent, even if the die is not
fair (so that the outcomes are not all equally likely).

If we have more than two random variables (for exampleX, Y, Z), we say that they
aremutually independentif the events that the random variables take specific values
(for example,X = a, Y = b, Z = c) are mutually independent.

Theorem 8 If X andY are independent of each other thenE(XY) = E(X)E(Y).

Proof

E(XY) = ∑
x

∑
y

xypX,Y(x,y)

= ∑
x

∑
y

xypX(x)pY(y) if X andY are independent

=
[
∑
x

xpX(x)
][

∑
y

ypY(y)

]
= E(X)E(Y).

Note that the converse is not true, as the following example shows.

Example Suppose thatX andY have the joint p.m.f. in this table.

Values ofY

−1 0 1

Values 0 0 1
2 0

of X 1 1
4 0 1

4

The marginal distributions are
x 0 1

pX(x) 1
2

1
2
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and
y −1 0 1

pY(y) 1
4

1
2

1
4

ThereforeP(X = 0 andY = 1) = 0 butP(X = 0)P(Y = 1) = 1
2×

1
4 6= 0 soX andY are

not independent of each other. However,E(X) = 1/2 andE(Y) = 0 soE(X)E(Y) = 0,
while

E(XY) =−1× 1
4

+0× 1
2

+1× 1
4

= 0,

soE(XY) = E(X)E(Y).

Covariance and correlation

A measure of the joint spread ofX andY is the covarianceof X andY, which is
defined by

Cov(X,Y) = E ((X−µX)(Y−µY)) ,

whereµX = E(X) andµY = E(Y).

Theorem 9 (Properties of covariance) (a) Cov(X,X) = Var(X).

(b) Cov(X,Y) = E(XY)−E(X)E(Y).

(c) If a is a constant then Cov(aX,Y) = Cov(X,aY) = aCov(X,Y).

(d) If b is constant then Cov(X,Y +b) = Cov(X +b,Y) = Cov(X,Y).

(e) If X andY are independent, then Cov(X,Y) = 0.

Proof (a) This follows directly from the definition.

(b)

Cov(X,Y) = E ((X−µX)(Y−µY))
= E (XY−µXY−µYX +µXµY)
= E(XY)+E(−µXY)+E(−µYX)+E(µXµY) by Theorem 7(a)

= E(XY)−µXE(Y)−µYE(X)+µXµY by Theorem 4

= E(XY)−E(X)E(Y)−E(Y)E(X)+E(X)E(Y)
= E(XY)−E(X)E(Y).

5



(c) From part (b), Cov(aX,Y)= E(aXY)−E(aX)E(Y). From Theorem 4,E(aXY)=
aE(XY) andE(aX) = aE(X). Therefore

Cov(aX,Y) = aE(XY)−aE(X)E(Y) = a(E(XY)−E(X)E(Y)) = aCov(X,Y).

(d) Theorem 4 shows thatE(Y +b) = E(Y)+b, so we have(Y +b)−E(Y +b) =
Y−E(Y). Therefore

Cov(X,Y +b) = E(X−E(X))(Y +b−E(Y +b))
= E(X−E(X))(Y−E(Y)) = Cov(X,Y).

(e) From part (b), Cov(X,Y)= E(XY)−E(X)E(Y). Theorem 8 shows thatE(XY)−
E(X)E(Y) = 0 if X andY are independent of each other.

The covariance ofX andY is the product of the distance ofX from its mean and
the distance ofY from its mean. Therefore, ifX−µX andY−µY tend to be either both
postive or both negative then Cov(X,Y) is positive. On the other hand, ifX−µX and
Y−µY tend to have opposite signs then Cov(X,Y) is negative.

If Var(X) or Var(Y) is large then Cov(X,Y) may also be large; in fact, multiply-
ing X by a constanta multiplies Var(X) by a2 and Cov(X,Y) by a. To avoid this
dependence on scale, we define thecorrelation coefficient, corr(X,Y), which is just a
“normalised” version of the covariance. It is defined as follows:

corr(X,Y) =
Cov(X,Y)√

Var(X)Var(Y)
.

The point of this is the first and last parts of the following theorem.

Theorem (Properties of correlation) Let X andY be random variables. Then

(a)−1≤ corr(X,Y)≤ 1;

(b) if X andY are independent, then corr(X,Y) = 0;

(c) if Y = mX+c for some constantsm 6= 0 andc, then corr(X,Y) = 1 if m> 0, and
corr(X,Y) =−1 if m< 0; this is the only way in which corr(X,Y) can be equal
to±1;

(d) corr(X,Y) is independent of the units of measurement in the sense that ifX or
Y is multilpied by a constant, or has a constant added to it, then corr(X,Y) is
unchanged.
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The proof of the first part won’t be given here. But note that this is another check
on your calculations: if you calculate a correlation coefficient which is bigger than 1
or smaller than−1, then you have made a mistake. Part (b) follows immediately from
part (e) of the preceding theorem.

For part (c), suppose thatY = mX+ c. Let Var(X) = α. Now we just calculate
everything in sight.

Var(Y) = Var(mX+c) = Var(mX) = m2Var(X) = m2α

Cov(X,Y) = Cov(X,mX+c) = Cov(X,mX) = mCov(X,X) = mα

corr(X,Y) = Cov(X,Y)/
√

Var(X)Var(Y)

= mα/
√

m2α2

=
{+1 if m> 0,
−1 if m< 0.

The proof of the converse will not be given here.
Part (d) follows from Theorems 4, 5 and 9.

Thus the correlation coefficient is a measure of the extent to which the two vari-
ables are linearly related. It is+1 if Y increases linearly withX; 0 if there is no linear
relation between them; and−1 if Y decreases linearly asX increases. More generally,
a positive correlation indicates a tendency for largerX values to be associated with
largerY values; a negative value, for smallerX values to be associated with larger
Y values.

We call two random variablesX andY uncorrelatedif Cov(X,Y) = 0 (in other
words, if corr(X,Y) = 0). The preceding theorem and example show that we can say:

Independent random variables are uncorrelated, but uncorrelated random
variables need not be independent.

Example In some years there are two tests in the Probability class. We can take as
the sample space the set of all students who take both tests, and choose a student at
random. PutX(s) = the mark of studentson Test 1 andY(s) = the mark of students
on Test 2. We would expect a student who scores better than average on Test 1 to do
so again on Test 2, and one who scores worse than average to do so again on Test 2,
so there should be a positive correlation betweenX andY. However, we would not
expect the Test 2 scores to be perfectly predictable as a linear function of the Test 1
scores. The marks for one particular year are shown in Figure 1. The correlation is
0.69 to 2 decimal places.

7



Test 2

Test 1
0 20 40 60 80 100

0

20

40

60

80

100

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×
×

×

×
×

×
××

×
×

×

×

××

×

×

×
×

×
×

×

×
×

×

×

×

×
×

×

×
×

×

×

×
× ×

×

×

×

×

×

×

×
×

×

×

×
×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

Figure 1: Marks on two Probability tests
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Theorem 10 If X andY are random variables anda andb are constants then

Var(aX+bY) = a2Var(X)+2abCov(X,Y)+b2Var(Y).

Proof First,

E(aX+bY) = E(aX)+E(bY) by Theorem 7

= aE(X)+bE(Y) by Theorem 4

= aµX +bµY.

Then

Var(aX+bY) = E[(aX+bY)−E(aX+bY)]2 by definition of variance

= E[aX+bY−aµX−bµY]2

= E[a(X−µX)+b(Y−µY)]2

= E[a2(X−µX)2 +2ab(X−µX)(Y−µY)+b2(Y−µY)2]
= E[a2(X−µX)2]+E[2ab(X−µX)(Y−µY)]+E[b2(Y−µY)2]

by Theorem 7

= a2E[(X−µX)2]+2abE[(X−µX)(Y−µY)]+b2E[(Y−µY)2]
by Theorem 4

= a2Var(X)+2abCov(X,Y)+b2Var(Y).

Corollary If X andY are independent, then

(a) Var(X +Y) = Var(X)+Var(Y).

(b) Var(X−Y) = Var(X)+Var(Y).
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Mean and variance of binomial

Here is the third way of finding the mean and variance of a binomial distribution,
which is more sophisticated than the methods in Notes 8 yet easier than both. If
X ∼ Bin(n, p) thenX can be thought of as the the number of successes inn mutually
independent Bernoulli trials, each of which has probabilityp of success.

For i = 1, . . . , n, let Xi be the number of successes at thei-th trial. ThenXi ∼
Bernoulli(p), soE(Xi) = p and Var(Xi) = pq, whereq= 1− p. Moreover, the random
variablesX1, . . . ,Xn are mutually independent.

By Theorem 7,

E(X) = E(X1)+E(X2)+ · · ·+E(Xn)
= p+ p+ · · ·+ p︸ ︷︷ ︸

n times
= np.

By the Corollary to Theorem 10,

Var(X) = Var(X1)+Var(X2)+ · · ·+Var(Xn)
= pq+ pq+ · · ·+ pq︸ ︷︷ ︸

n times
= npq.

Note that if alsoY ∼ Bin(m, p), andX andY are independent of each other, then
Y = Xn+1+ · · ·+Xn+m, whereXn+1, . . . ,Xn+m are mutually independent Bernoulli(p)
random variables which are all independent ofX1, . . . ,Xn, so

X +Y = X1 · · ·+Xn +Xn+1 + · · ·Xn+m,

which is the sum ofn+ m mutually independent Bernoulli(p) random variables, so
X +Y ∼ Bin(n+m, p).
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