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Some special continuous random variables

In this section we introduce three important types of continuous random variable: uni-
form, exponential, and normal. The details are summarised on the course information
sheet entitiledContinuous random variableMake sure that you have a copy!

Uniform random variable U (a,b) also known as uniforia, b]

Letaandb be real numbers with < b. A uniform random variable on the interval
[a,b] is, roughly speaking, “equally likely to be anywhere in the interval”. In other
words, its probability density function is constant on the intefaab| (and zero out-
side the interval). What should the constant vajuee? The integral of the p.d.f. is
the area of a rectangle of heightand basé — a; this must be 1, se = 1/(b—a).
Thus, the p.d.f. of the random variabfe~ U (a,b) is given by

_J1/(b—a) ifa<x<b,
f —
x(¥) {O otherwise.

So the support oX is the intervala, b], as we would expect. By integration, we find
that the c.d.f. is

Fx(X) =14 (x—a)/(b—a) ifa<x<b,

1 if x> b.
To find the expectation and variance, we use a little trick: first find them for the
special cas®) (0,1) and then use Theorems 4 and 5XIf- uniform[0, 1] then

00 1 N x=1 1
£00 = [ xttose= [xax= 5] =5
- 0 2 x=0 2

0 x=1
E(X2)=/ x2f(x)dx:/olx2 dx = [g] :%,
—® x=0

1

{0 if x<a,

and


http://www.maths.qmul.ac.uk/~rab/ProbI/crv.pdf
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1 1 1
— 2y _ 2_ - - _ =
Var(X) = E(X?) — (E(X)) 3 A" 1o
Now if Y ~ uniform[a,b] thenY = (b—a)X 4+ a whereX ~ uniform[0,1]. Then
Theorem 4 gives

E(Y)=(b—aEX)+a= %3.
Theorem 5 gives
2 (b—a)?
Var(Y) = (b—a)“Var(X) = 2
The mediamiis given byR/(m) = 1/2, that is,
m—a_ 1
b—a 2’

whencem = (a+b)/2. Note that the expected value and the mediaX afe both
given by (a+ b)/2 (the midpoint of the interval). This agrees with the fact that the
p.d.f. is symmetrical about the mid-point of the interval.

The uniform random variable doesn’t really arise in practical situations. However,
it is very useful for simulations. Most hand calculators and computer systems include
arandom number generatpwhich apparently produces independent values of a uni-
form random variable on the intervi, 1]. Of course, they are not really random,
since the computer is a deterministic machine; but there should be no obvious pattern
to the numbers produced, and in a large number of trials they should be distributed
uniformly over the interval.

You will learn in the Statistics course how to use a uniform random variable to
construct values of other types of discrete or continuous random variables. Its great
simplicity makes it the best choice for this purpose.

Exponential random variable Exp(A)

The exponential random variable arises in the same situation as the Poisson: be
careful not to confuse them! We have events which occur randomly but at a constant
average rate of per unit time (e.g. radioactive decays, people joining a queue, people
leaving a post-office counter, fish biting). The Poisson random variable, which is
discrete, counts how many events will occur in the next unit of time. The exponential
random variable, which is continuous, measures exactly how long from now it is until
the next event occurs. Note that it takes non-negative real numbers as values and that
A must be positive.

If X ~ EXp(A), the p.d.f. ofX is

00— {0 if x < 0,
XV = ae™™ if x> 0.
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So the support oK is the sef0, ») of positive real numbers. By integration, we find

the c.d.f. to be
0 if x <0,

() = {1—eAX if x> 0.

Further calculation gives
E(X)=1/A,  Var(X)=1/A2

This involves some integration by parts, so brush up your calculus before you try it for
yourself.

The mediamm satisfies - e 2™ = 1/2, so tham= log2/A. (The logarithm is the
natural logarithm to base e, so that log2.69314718056 approximately.)

You should compare this value with the valaéxX) = 1/A, which is about 40%
greater. This kind of situation often arises for random variables which can take non-
negative values. For example, suppose | select a member of the population at random
and letX be his or her annual income. The medianXofs the valuem such that
half the population earn less them The expected value is likely to be larger than
because a few people with very large incomes pull the average up.

Functions of continuous random variables

Before doing the final special continuous random variable, we make a diversion about
functions of random variables. This needs some ideas from Calculus.

Suppose thalt is an interval inR and thatg:| — R is a real function. Thexg is
defined to benonotonic increasing g(x) < g(y) whenevex < y andx andy are both
in 1, while g is monotonic decreasind g(x) > g(y) wheneverx < y andx andy are
both inl.

Suppose thatt = [a,b]. Putd =g(l) = {g(x) : x € | }. Calculus gives us the fol-
lowing facts. Ifg is monotonic increasing then

(@) Jis the intervalg(a),g(b)];
(b) g has an inverse functiomJ — | such thag(x) =y if and only if x = h(y);

(c) if gis continuous they andh are both differentiable almost everywhere, and
d'(x) > 0 andh/(y) > 0 wheneveg'(x) andh’(y) exist.

On the other hand, j is monotonic decreasing then
(@) Jis the intervalg(b),g(a)];
(b) ghas an inverse functiomJ — | such thag(x) =y if and only if x = h(y);
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(c) if gis continuous they andh are both differentiable almost everywhere, and
d'(x) <0 andh'(y) < 0 wheneveg'(x) andh’(y) exist.

Theorem 6 Let X be a continuous random variable with probability density function
fx and support, wherel = [a,b]. Letg:] — R be a continuous monotonic function
with inverse functiorh:J — |, whered = g(1). LetY = g(X). Then the probability
density functionfy of Y satsfies

_ [ Ix(h(y) [W(y)| ifyed
fv(y) = {OX otherwise.

Proof LetJ=[c,d|. If y < cthenY takes no values less than or equaytsoFy (y) =
P(Y <y) =P(g(X) <y) = 0. Differentition givesfy(y) = K/ (y) = 0.
If y > d thenY takes no values greater than or equaltsoP(Y >y) = 0; that is,
Fr(y) =1—P(Y >y) = 1. Again, differentiation givedy (y) = R/ (y) = 0.
If y € Jtheny = g(h(y)) and so
Fr(y) =P(Y <y) =P(a(X) < g(h(y)))- 1)

If gis increasing theg(X) < g(h(y)) if and only if X < h(y), so
Fr(y) = P(X <h(y)) = Fx(h(y)).

Differentiating with respect tg gives

fr(y) = Re(y) = Fx((h()H'(y) = Tx (h(y)) [N (y)]

becausé'(y) > 0 wheng is increasing.
On the other hand, i is decreasing theg(X) < g(h(y)) if and only if X > h(y),
so Equation ) gives

~_

Fr(y) = P(X > h(y)) = 1-Fx(h(y)).
Differentiation gives
fr(y) = R (y) = —Fx(h(y)H (y) = Fx(h(y)) [ ()|
becausé' (y) < 0 whengis decreasing. =

Corollary If X is a continuous random variable aWid= aX + b, wherea andb are

constants wtita # 0 then
y—b\ 1
f =fx | — | —.
v () x( a )\a|

Proof If y=g(x) = ax+ b thenx= (y—b)/a, soh(y) = (y—b)/a and |W(y)| =
|1/a] = 1/|al. Now substitute in Theoref®, m
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Normal random variables
As with uniform random variables, we deal first with the simplest case.

Standard normal random variable N(0,1)
A continuous random variabis standard normailf its p.d.f. is

1 e
fZ(X)ZEe X/Z.

The picture below shows the graph of this function, the familiar ‘bell-shaped
curve’.

The curve is symmetrical about 0, so the expected value and median are both equal
to 0. The support of is the whole real line.
Using techniques from Calculus that you have probably not yet met, you can show

that o
/ e /2y — /21,

from which it follows that
fz(x)dx = 1.

See if you can use integration by parts to show thatX/pe 1.

We writeZ ~ N(0,1): the ‘N’ is for normal, the ‘0’ is the expectation and the ‘1’
is the variance.

The c.d.f. ofZ is obtained as usual by integrating the p.d.f. However, it is not
possible to write the integral of this function (which, stripped of its constantS,st) e
in terms of ‘standard’ functions. So there is no alternative but to make tables of its
values. The c.d.f. of the standard normal is given in Table 4 oNbw Cambridge
Statistical Table$1]. The function is calledp in the tables.

Some important values from the tables are as follows:

68% of all the values lie withifi—1, 1]
95% of all the values lie withif—2, 2]
993% of all the values lie withirj—3, 3]



General normal random variable N(y,o?)

A random variableX is normalif it is given by X = aZ+ b whereZ is a standard
normal random variable aremlandb are constants wita # 0. From Theorem 4, we
haveE(X) = aE(Z) + b = b, while Theorem 5 gives V&KX) = a?Var(Z) = a. We
write X ~ N(b,a?). Frequently we write the mean pgsand the variance a&* with o
positive, so we havX ~ N(u,c?).

We use the Corollary to Theorem 6 to find the p.d.f. of a normal random variable:

X— 1 1
9=tz (5 ) G = e

The p.d.f. is symmetrical aboyt so the expected value and median are both equal
to . The support oK is the whole real line.

Since it is not possible to write the integral of this function in a nice form, we need
to convert general normal random variables into the standard normal random variable.
If X ~N(y,0%), andZ = (X — ) /o, thenZ ~ N(0,1). So we only need tables of the
c.d.f. @ for the standard normal random variabl€0, 1).

For example, suppose that N(6,25).What is the probability that < 8? Putting
Z=(X—-6)/5, sothaZ ~ N(0,1), we find thatX <8 ifand only ifZ < (8 —6) /5=
0.4. From the tables, the probability of thisdg0.4) = 0.6554.

The p.d.f. of a standard normal random variabls symmetric about zero. This
means that, for any positive numhbgr

d(—c)=P(Z<—c)=P(Z>c)=1-P(Z<c)=1-P(c).

So itis only necessary to tabulate the function for positive values of its argument.
So, if X ~ N(6,25) andZ = (X — 6) /5 as before, then

P(X<3)=P(Z< -06)=1—P(Z<0.6)=1-0.7257=0.2743

Applications of normal random variables

The normal random variable is the commonest of all in applications, and the most
important. There is a theorem called tbentral limit theoremwhich says that, for
virtually any random variablX which is not too bizarre, if you take the sum (or the
average) ofi independent random variables with the same distributioX, daise result

will be approximately normal, and will become more and more like a normal variable
asn grows. This partly explains why a random variable affected by many independent
factors, like a man’s height, has an approximately normal distribution. Of course, if
X ~ N(u,0%) andX represents a positive quantity such as height in cm then we would
expect to havel— 30 > 0.



Bin(9,0.5) (3,9
0.2+ 0.2+
0.1+ 0.1+
| |
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Bin(24,0.4) N(9.6,5.76)
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m‘ [ |
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0.1+ 0.1+




More precisely, ifis large, then a Bifn, p) random variable is well approximated
by a normal random variable with the same expected vajuand the same variance
npg The preceding graphs show three examples: the less symmetric is the original
distribution, the larger that needs to be before the apporoximation is good. (If you
are approximating any discrete random variable by a continuous one, you should make
a “continuity correction” — see the next section for details and an example.)

On using tables

We end this section with a few comments about using tables, not tied particularly to
the normal distribution (though most of the examples will come from there).

Interpolation Any table is limited in the number of entries it contains. Tabulating
something with the input given to one extra decimal place would make the table ten
times as bulky! Interpolation can be used to extend the range of values tabulated.

Suppose that some functiénis tabulated with the input given to three places of
decimals. Itis probably true th&tis changing at a roughly constant rate between, say,
0.28 and 029. SoF (0.283) will be about three-tenths of the way betwde(0.28)
andF(0.29).

For example, ifd is the c.d.f. of the standard normal distribution, thie®.28) =
0.6103 and®(0.29) = 0.6141, so®d(0.283) = 0.6114. (Three-tenths of.0038 is
0.0011.)

Using tables in reverse This means, if you have a table of valuedgfuse it to find
x such that~(x) is a given valuec. Usually,c won't be in the table and we have to
interpolate between valueg andxp, whereF (x;) is just less thar andF (x2) is just
greater.

For example, if® is the c.d.f. of the standard normal distribution, and we want the
upper quartile, then we find from tablég0.67) = 0.7486 and®(0.68) = 0.7517, so
the required value is about@¥45 (since M014/0.0031= 0.45).

In this case, the percentile points of the standard normal r.v. are given in Table 5 of
theNew Cambridge Statistical Tabl¢k], so you don't need to do this. But you will
find it necessary in other cases.

Continuity correction Suppose we know that a discrete random variabis well
approximated by a continuous random variahleWe are given a table of the c.d.f.
of Y and want to find information abodt. For example, suppose théttakes integer
values and we want to finel(a < X < b), wherea andb are integers. This probability



is equal to
P(X :a)+P(X:a+1)_|_..._|_p(X: b).

To say thaiX can be approximated by means that, for exampl®(X = a) is approx-
imately equal tofy (a), wherefy is the p.d.f. ofY. This is equal to the area of a rect-
angle of heightfy(a) and base 1 (froma— 0.5 toa+ 0.5). This in turn is, to a good
approximation, the area under the cugve fy(x) fromx=a—0.5tox=a+ 0.5,
since the pieces of the curve above and below the rectangle on either gideaofill
approximately cancel. Similarly for the other values.

Adding all these pieces. we find thata < X < b) is approximately equal to the
area under the curve= fy(x) from x=a— 0.5 tox = b+ 0.5. This area is given
by Fv(b+0.5) — Fy(a— 0.5), sinceFy is the integral offy. Said otherwise, this is

P(a—05<Y <b+0.5).
y=fv(x)
\-P(ia)

~

a-05 a a+0.5
We summarise theontinuity correction

Suppose that the discrete random variakletaking integer values, is
approximated by the continuous random variabld hen

P(a<X <b)~P(a—05<Y < b+05)=F(b+0.5) —F(a—0.5).

(Here, ~ means “approximately equal’.) Similarly, for exampR(X < b) ~
P(Y <b+0.5),andP(X > a) ~ P(Y > a—0.5).

Example The probability that a light bulb will fail in a year is.?5, and light
bulbs fail independently. If 192 bulbs are installed, what is the probability that the
number which fail in a year lies between 140 and 150 inclusive?

Let X be the number of light bulbs which fail in a year. Thén- Bin(192 3/4),
and soE(X) = 144, Va(X) = 36. SoX is approximated by ~ N(144 36), and

P(140< X < 150) ~ P(1395 < Y < 1505)
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by the continuity correction.
LetZ = (Y —144)/6. ThenZ ~ N(0,1), and

P(1395<Y < 1505) = P (Mg 7< M)

6

= P(-0.75<Z2<1.083

= 0.8606—0.2268 (from tables)
= 0.6338

[1] D. V. Lindley and W. F. ScottNew Cambridge Statistical TableSambridge Uni-
versity Press.
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