
MAS 108 Probability I

Notes 10 Autumn 2005

Some special continuous random variables

In this section we introduce three important types of continuous random variable: uni-
form, exponential, and normal. The details are summarised on the course information
sheet entitiledContinuous random variables. Make sure that you have a copy!

Uniform random variable U(a,b) also known as uniform[a,b]
Let a andb be real numbers witha< b. A uniform random variable on the interval

[a,b] is, roughly speaking, “equally likely to be anywhere in the interval”. In other
words, its probability density function is constant on the interval[a,b] (and zero out-
side the interval). What should the constant valuec be? The integral of the p.d.f. is
the area of a rectangle of heightc and baseb−a; this must be 1, soc = 1/(b−a).
Thus, the p.d.f. of the random variableX ∼U(a,b) is given by

fX(x) =
{

1/(b−a) if a≤ x≤ b,
0 otherwise.

So the support ofX is the interval[a,b], as we would expect. By integration, we find
that the c.d.f. is

FX(x) =

{
0 if x < a,
(x−a)/(b−a) if a≤ x≤ b,
1 if x > b.

To find the expectation and variance, we use a little trick: first find them for the
special caseU(0,1) and then use Theorems 4 and 5. IfX ∼ uniform[0,1] then

E(X) =
Z ∞

−∞
x f(x)dx =

Z 1

0
x dx =

[
x2

2

]x=1

x=0
=

1
2
,

and

E(X2) =
Z ∞

−∞
x2 f (x)dx =

Z 1

0
x2 dx =

[
x3

3

]x=1

x=0
=

1
3
,
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so

Var(X) = E(X2)− (E(X))2 =
1
3
− 1

4
=

1
12

.

Now if Y ∼ uniform[a,b] thenY = (b−a)X + a whereX ∼ uniform[0,1]. Then
Theorem 4 gives

E(Y) = (b−a)E(X)+a =
a+b

2
.

Theorem 5 gives

Var(Y) = (b−a)2Var(X) =
(b−a)2

12
.

The medianm is given byFY(m) = 1/2, that is,

m−a
b−a

=
1
2
,

whencem = (a+ b)/2. Note that the expected value and the median ofY are both
given by(a+ b)/2 (the midpoint of the interval). This agrees with the fact that the
p.d.f. is symmetrical about the mid-point of the interval.

The uniform random variable doesn’t really arise in practical situations. However,
it is very useful for simulations. Most hand calculators and computer systems include
a random number generator, which apparently produces independent values of a uni-
form random variable on the interval[0,1]. Of course, they are not really random,
since the computer is a deterministic machine; but there should be no obvious pattern
to the numbers produced, and in a large number of trials they should be distributed
uniformly over the interval.

You will learn in the Statistics course how to use a uniform random variable to
construct values of other types of discrete or continuous random variables. Its great
simplicity makes it the best choice for this purpose.

Exponential random variable Exp(λ)
The exponential random variable arises in the same situation as the Poisson: be

careful not to confuse them! We have events which occur randomly but at a constant
average rate ofλ per unit time (e.g. radioactive decays, people joining a queue, people
leaving a post-office counter, fish biting). The Poisson random variable, which is
discrete, counts how many events will occur in the next unit of time. The exponential
random variable, which is continuous, measures exactly how long from now it is until
the next event occurs. Note that it takes non-negative real numbers as values and that
λ must be positive.

If X ∼ Exp(λ), the p.d.f. ofX is

fX(x) =
{

0 if x < 0,
λe−λx if x≥ 0.
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So the support ofX is the set[0,∞) of positive real numbers. By integration, we find
the c.d.f. to be

FX(x) =
{

0 if x < 0,
1−e−λx if x≥ 0.

Further calculation gives

E(X) = 1/λ, Var(X) = 1/λ2.

This involves some integration by parts, so brush up your calculus before you try it for
yourself.

The medianmsatisfies 1−e−λm = 1/2, so thatm= log2/λ. (The logarithm is the
natural logarithm to base e, so that log2= 0.69314718056 approximately.)

You should compare this value with the valueE(X) = 1/λ, which is about 40%
greater. This kind of situation often arises for random variables which can take non-
negative values. For example, suppose I select a member of the population at random
and letX be his or her annual income. The median ofX is the valuem such that
half the population earn less thanm. The expected value is likely to be larger thanm,
because a few people with very large incomes pull the average up.

Functions of continuous random variables

Before doing the final special continuous random variable, we make a diversion about
functions of random variables. This needs some ideas from Calculus.

Suppose thatI is an interval inR and thatg: I → R is a real function. Theng is
defined to bemonotonic increasingif g(x) < g(y) wheneverx< y andx andy are both
in I , while g is monotonic decreasingif g(x) > g(y) wheneverx < y andx andy are
both inI .

Suppose thatI = [a,b]. PutJ = g(I) = {g(x) : x∈ I}. Calculus gives us the fol-
lowing facts. Ifg is monotonic increasing then

(a) J is the interval[g(a),g(b)];

(b) g has an inverse functionh:J→ I such thatg(x) = y if and only if x = h(y);

(c) if g is continuous theng andh are both differentiable almost everywhere, and
g′(x)≥ 0 andh′(y)≥ 0 wheneverg′(x) andh′(y) exist.

On the other hand, ifg is monotonic decreasing then

(a) J is the interval[g(b),g(a)];

(b) g has an inverse functionh:J→ I such thatg(x) = y if and only if x = h(y);
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(c) if g is continuous theng andh are both differentiable almost everywhere, and
g′(x)≤ 0 andh′(y)≤ 0 wheneverg′(x) andh′(y) exist.

Theorem 6 Let X be a continuous random variable with probability density function
fX and supportI , whereI = [a,b]. Let g: I → R be a continuous monotonic function
with inverse functionh:J → I , whereJ = g(I). Let Y = g(X). Then the probability
density functionfY of Y satsfies

fY(y) =
{

fX(h(y)) |h′(y)| if y∈ J
0 otherwise.

Proof Let J = [c,d]. If y< c thenY takes no values less than or equal toy, soFY(y) =
P(Y ≤ y) = P(g(X)≤ y) = 0. Differentition givesfY(y) = F ′

Y(y) = 0.
If y > d thenY takes no values greater than or equal tod, soP(Y≥ y) = 0; that is,

FY(y) = 1−P(Y ≥ y) = 1. Again, differentiation givesfY(y) = F ′
Y(y) = 0.

If y∈ J theny = g(h(y)) and so

FY(y) = P(Y ≤ y) = P(g(X)≤ g(h(y))). (1)

If g is increasing theng(X)≤ g(h(y)) if and only if X ≤ h(y), so

FY(y) = P(X ≤ h(y)) = FX(h(y)).

Differentiating with respect toy gives

fY(y) = F ′
Y(y) = F ′

X((h(y))h′(y) = fX(h(y))
∣∣h′(y)∣∣

becauseh′(y)≥ 0 wheng is increasing.
On the other hand, ifg is decreasing theng(X)≤ g(h(y)) if and only if X ≥ h(y),

so Equation (1) gives

FY(y) = P(X ≥ h(y)) = 1−FX(h(y)).

Differentiation gives

fY(y) = F ′
Y(y) =−F ′

X(h(y))h′(y) = F ′
X(h(y))

∣∣h′(y)∣∣
becauseh′(y)≤ 0 wheng is decreasing.

Corollary If X is a continuous random variable andY = aX+ b, wherea andb are
constants wtiha 6= 0 then

fY(y) = fX

(
y−b

a

)
1
|a|

.

Proof If y = g(x) = ax+ b then x = (y− b)/a, so h(y) = (y− b)/a and |h′(y)| =
|1/a|= 1/ |a|. Now substitute in Theorem6.
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Normal random variables

As with uniform random variables, we deal first with the simplest case.

Standard normal random variable N(0,1)
A continuous random variableZ is standard normalif its p.d.f. is

fZ(x) =
1√
2π

e−x2/2.

The picture below shows the graph of this function, the familiar ‘bell-shaped
curve’.
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The curve is symmetrical about 0, so the expected value and median are both equal
to 0. The support ofZ is the whole real line.

Using techniques from Calculus that you have probably not yet met, you can show
that Z ∞

−∞
e−x2/2dx =

√
2π,

from which it follows that Z ∞

∞
fZ(x)dx = 1.

See if you can use integration by parts to show that Var(Z) = 1.
We writeZ∼ N(0,1): the ‘N’ is for normal, the ‘0’ is the expectation and the ‘1’

is the variance.
The c.d.f. ofZ is obtained as usual by integrating the p.d.f. However, it is not

possible to write the integral of this function (which, stripped of its constants, is e−x2
)

in terms of ‘standard’ functions. So there is no alternative but to make tables of its
values. The c.d.f. of the standard normal is given in Table 4 of theNew Cambridge
Statistical Tables[1]. The function is calledΦ in the tables.

Some important values from the tables are as follows:

68% of all the values lie within[−1,1]
95% of all the values lie within[−2,2]
993

4% of all the values lie within[−3,3]
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General normal random variable N(µ,σ2)
A random variableX is normal if it is given by X = aZ+b whereZ is a standard

normal random variable anda andb are constants witha 6= 0. From Theorem 4, we
haveE(X) = aE(Z)+ b = b, while Theorem 5 gives Var(X) = a2Var(Z) = a2. We
write X ∼ N(b,a2). Frequently we write the mean asµ and the variance asσ2 with σ
positive, so we haveX ∼ N(µ,σ2).

We use the Corollary to Theorem 6 to find the p.d.f. of a normal random variable:

fX(x) = fZ

(
x−µ

σ

)
× 1

σ
=

1

σ
√

2π
e−(x−µ)2/2σ2

.

The p.d.f. is symmetrical aboutµ, so the expected value and median are both equal
to µ. The support ofX is the whole real line.

Since it is not possible to write the integral of this function in a nice form, we need
to convert general normal random variables into the standard normal random variable.
If X ∼ N(µ,σ2), andZ = (X−µ)/σ, thenZ∼ N(0,1). So we only need tables of the
c.d.f.Φ for the standard normal random variableN(0,1).

For example, suppose thatX∼N(6,25).What is the probability thatX≤8? Putting
Z = (X−6)/5, so thatZ∼ N(0,1), we find thatX ≤ 8 if and only ifZ≤ (8−6)/5 =
0.4. From the tables, the probability of this isΦ(0.4) = 0.6554.

The p.d.f. of a standard normal random variableZ is symmetric about zero. This
means that, for any positive numberc,

Φ(−c) = P(Z≤−c) = P(Z≥ c) = 1−P(Z≤ c) = 1−Φ(c).

So it is only necessary to tabulate the function for positive values of its argument.
So, if X ∼ N(6,25) andZ = (X−6)/5 as before, then

P(X ≤ 3) = P(Z≤−0.6) = 1−P(Z≤ 0.6) = 1−0.7257= 0.2743.

Applications of normal random variables

The normal random variable is the commonest of all in applications, and the most
important. There is a theorem called thecentral limit theoremwhich says that, for
virtually any random variableX which is not too bizarre, if you take the sum (or the
average) ofn independent random variables with the same distribution asX, the result
will be approximately normal, and will become more and more like a normal variable
asn grows. This partly explains why a random variable affected by many independent
factors, like a man’s height, has an approximately normal distribution. Of course, if
X ∼N(µ,σ2) andX represents a positive quantity such as height in cm then we would
expect to haveµ−3σ > 0.
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More precisely, ifn is large, then a Bin(n, p) random variable is well approximated
by a normal random variable with the same expected valuenp and the same variance
npq. The preceding graphs show three examples: the less symmetric is the original
distribution, the larger thatn needs to be before the apporoximation is good. (If you
are approximating any discrete random variable by a continuous one, you should make
a “continuity correction” – see the next section for details and an example.)

On using tables

We end this section with a few comments about using tables, not tied particularly to
the normal distribution (though most of the examples will come from there).

Interpolation Any table is limited in the number of entries it contains. Tabulating
something with the input given to one extra decimal place would make the table ten
times as bulky! Interpolation can be used to extend the range of values tabulated.

Suppose that some functionF is tabulated with the input given to three places of
decimals. It is probably true thatF is changing at a roughly constant rate between, say,
0.28 and 0.29. SoF(0.283) will be about three-tenths of the way betweenF(0.28)
andF(0.29).

For example, ifΦ is the c.d.f. of the standard normal distribution, thenΦ(0.28) =
0.6103 andΦ(0.29) = 0.6141, soΦ(0.283) = 0.6114. (Three-tenths of 0.0038 is
0.0011.)

Using tables in reverse This means, if you have a table of values ofF , use it to find
x such thatF(x) is a given valuec. Usually,c won’t be in the table and we have to
interpolate between valuesx1 andx2, whereF(x1) is just less thanc andF(x2) is just
greater.

For example, ifΦ is the c.d.f. of the standard normal distribution, and we want the
upper quartile, then we find from tablesΦ(0.67) = 0.7486 andΦ(0.68) = 0.7517, so
the required value is about 0.6745 (since 0.0014/0.0031= 0.45).

In this case, the percentile points of the standard normal r.v. are given in Table 5 of
theNew Cambridge Statistical Tables[1], so you don’t need to do this. But you will
find it necessary in other cases.

Continuity correction Suppose we know that a discrete random variableX is well
approximated by a continuous random variableY. We are given a table of the c.d.f.
of Y and want to find information aboutX. For example, suppose thatX takes integer
values and we want to findP(a≤ X ≤ b), wherea andb are integers. This probability
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is equal to
P(X = a)+P(x = a+1)+ · · ·+P(X = b).

To say thatX can be approximated byY means that, for example,P(X = a) is approx-
imately equal tofY(a), where fY is the p.d.f. ofY. This is equal to the area of a rect-
angle of heightfY(a) and base 1 (froma−0.5 to a+0.5). This in turn is, to a good
approximation, the area under the curvey = fY(x) from x = a−0.5 to x = a+ 0.5,
since the pieces of the curve above and below the rectangle on either side ofx= a will
approximately cancel. Similarly for the other values.

Adding all these pieces. we find thatP(a≤ X ≤ b) is approximately equal to the
area under the curvey = fY(x) from x = a− 0.5 to x = b+ 0.5. This area is given
by FY(b+ 0.5)−FY(a− 0.5), sinceFY is the integral offY. Said otherwise, this is
P(a−0.5≤Y ≤ b+0.5).

.
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y= fY(x)uP(X=a)

a−0.5 a a+0.5

We summarise thecontinuity correction:

Suppose that the discrete random variableX, taking integer values, is
approximated by the continuous random variableY. Then

P(a≤ X ≤ b)≈ P(a−0.5≤Y ≤ b+0.5) = FY(b+0.5)−FY(a−0.5).

(Here,≈ means “approximately equal”.) Similarly, for example,P(X ≤ b) ≈
P(Y ≤ b+0.5), andP(X ≥ a)≈ P(Y ≥ a−0.5).

Example The probability that a light bulb will fail in a year is 0.75, and light
bulbs fail independently. If 192 bulbs are installed, what is the probability that the
number which fail in a year lies between 140 and 150 inclusive?

Let X be the number of light bulbs which fail in a year. ThenX ∼ Bin(192,3/4),
and soE(X) = 144, Var(X) = 36. SoX is approximated byY ∼ N(144,36), and

P(140≤ X ≤ 150)≈ P(139.5≤Y ≤ 150.5)
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by the continuity correction.
Let Z = (Y−144)/6. ThenZ∼ N(0,1), and

P(139.5≤Y ≤ 150.5) = P

(
139.5−144

6
≤ Z≤ 150.5−144

6

)
= P(−0.75≤ Z≤ 1.083)
= 0.8606−0.2268 (from tables)

= 0.6338.

[1] D. V. Lindley and W. F. Scott,New Cambridge Statistical Tables, Cambridge Uni-
versity Press.
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