
MAS 108 Probability I

Notes 1 Autumn 2005

Sample space, events

The general setting is: We perform an experiment which can have a number of differ-
ent outcomes. Thesample spaceis the set of all possible outcomes of the experiment.
We usually call itS .

It is important to be able to list the outcomes clearly. For example, if I plant ten
bean seeds and count the number that germinate, the sample space is

S = {0,1,2,3,4,5,6,7,8,9,10}.

(This notation means the set whose members are 0,1, . . . ,9,10. See the handout on
mathematical notation.)

If I toss a coin three times and record the results of the three tosses, the sample
space is

S = {HHH,HHT,HTH,HTT,THH,THT,TTH,TTT},

where (for example)HTH means ‘heads on the first toss, then tails, then heads again’.
If I toss a fair coin three times and simply count the number of heads obtained, this

is a different experiment, with a different sample space, namelyS = {0,1,2,3}.
Sometimes we can assume thatall the outcomes are equally likely. Don’t assume

this unless either you are told to, or there is some physical reason for assuming it. In
the beans example, it is most unlikely. In the coins example, the assumption will hold
if the coin is ‘fair’: this means that there is no physical reason for it to favour one side
over the other. Of course, in the last example, the four outcomes would definitely not
be equally likely!

If all outcomes are equally likely, then each has probability 1/|S |. (Remember that
|S | is the number of elements in the setS .)

On this point, Albert Einstein wrote, in his 1905 paperOn a heuristic point of view
concerning the production and transformation of light(for which he was awarded the
Nobel Prize),
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In calculating entropy by molecular-theoretic methods, the word “proba-
bility” is often used in a sense differing from the way the word is defined
in probability theory. In particular, “cases of equal probability” are of-
ten hypothetically stipulated when the theoretical methods employed are
definite enough to permit a deduction rather than a stipulation.

In other words: Don’t just assume that all outcomes are equally likely,especiallywhen
you are given enough information to calculate their probabilities!

An eventis a subset ofS . We can specify an event by listing all the outcomes that
make it up. In the above example, letA be the event ‘more heads than tails’ andB the
event ‘tails on last throw’. Then

A = {HHH,HHT,HTH,THH},
B = {HHT,HTT,THT,TTT}.

The probability of an event is calculated by adding up the probabilities of all the
outcomes comprising that event. So,if all outcomes are equally likely, we have

P(A) =
|A|
|S |

.

In our example, bothA andB have probability 4/8 = 1/2.
An event issimpleif it consists of just a single outcome, and iscompoundother-

wise. In the example,A andB are compound events, while the event ‘heads on every
throw’ is simple (as a set, it is{HHH}). If A = {a} is a simple event, then the proba-
bility of A is just the probability of the outcomea, and we usually writeP(a), which is
simpler to write thanP({a}). (Note thata is anoutcome, while{a} is anevent, indeed
a simple event.)

We can build new events from old ones:

• A∪B (read ‘A unionB’) consists of all the outcomes inA or in B (or both!);

• A∩B (read ‘A intersectionB’) consists of all the outcomes in bothA andB;

• A\B (read ‘A minusB’) consists of all the outcomes inA but not inB;

• A′ (read ‘complement ofA’) consists of all outcomes not inA (that is,S \A);

• /0 (read ‘empty set’) for the event which doesn’t contain any outcomes.

Note the backward-sloping slash; this is not the same as either a vertical slash| or a
forward slash/. We also write
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• A ⊆ B (read ‘A is a subset ofB’ or ‘ A is contained inB’) to show that every
outcome inA is also inB.

In the example,A′ is the event ‘at least as many tails as heads’, andA∩B is the
event{HHT}. Note thatP(A∩B) = 1/8; this is not equal toP(A) ·P(B), despite what
you read in some books!

What is probability?

Nobody really knows the answer to this question.
Some people think of it as ‘limiting frequency’. That is, to say that the probability

of getting heads when a coin is tossed means that, if the coin is tossed many times, it
is likely to come down heads about half the time. But if you toss a coin 1000 times,
you are not likely to get exactly 500 heads. You wouldn’t be surprised to get only 495.
But what about 450, or 100?

Some people would say that you can work out probability by physical arguments,
like the one we used for a fair coin. But this argument doesn’t work in all cases (for
example, if one side of the coin is made of lead and the other side of aluminium); and
it doesn’t explain what probability means.

Some people say it is subjective. You say that the probability of heads in a coin
toss is 1/2 because you have no reason for thinking either heads or tails more likely;
you might change your view if you knew that the owner of the coin was a magician or
a con man. But we can’t build a theory on something subjective.

We regard probability as a way of modelling uncertainty. We start off with a math-
ematical construction satisfying some axioms (devised by the Russian mathematician
A. N. Kolmogorov). We develop ways of doing calculations with probability, so that
(for example) we can calculate how unlikely it is to get 480 or fewer heads in 1000
tosses of a fair coin. The answer agrees well with experiment.

Kolmogorov’s Axioms

Remember that an event is a subset of the sample spaceS . Two eventsA andB are
calleddisjoint if A∩B = /0, that is, no outcome is contained in both. A number of
events, sayA1,A2, . . ., are calledmutually disjointor pairwise disjointif Ai ∩A j = /0
for any two of the eventsAi andA j ; that is, no two of the events overlap.

According to Kolmogorov’s axioms, each eventA has a probabilityP(A), which is
a number. These numbers satisfy three axioms:

Axiom 1: For any eventA, we haveP(A)≥ 0.

Axiom 2: P(S) = 1.
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Axiom 3: If the eventsA1,A2, . . . are pairwise disjoint, then

P(A1∪A2∪·· ·) = P(A1)+P(A2)+ · · ·

Note that in Axiom 3, we have the union of events and the sum of numbers. Don’t mix
these up;neverwrite P(A1)∪P(A2), for example. Sometimes we separate Axiom 3
into two parts: Axiom 3a if there are only finitely many eventsA1,A2, . . . ,An, so that
we have

P(A1∪·· ·∪An) =
n

∑
i=1

P(Ai),

and Axiom 3b for infinitely many. We will only use Axiom 3a, but 3b is important
later on.

Notice that we write
n

∑
i=1

P(Ai)

for
P(A1)+P(A2)+ · · ·+P(An).

Proving things from the axioms

You can prove simple properties of probability from the axioms. That means that
every step must be justified by appealing to an axiom. These properties seem obvious,
just as obvious as the axioms; but the point of this game is that we assume only the
axioms, and build everything else from that.

Here are some examples of things proved from the axioms. There is really no
difference between a theorem, a proposition, a lemma, and a corollary; they are all
fancy words used by mathematicians for things that have to be proved. Usually, a
theorem is a big, important statement; a proposition a rather smaller statement; a
lemma is a stepping-stone on the way to a theorem; and a corollary is something that
follows quite easily from a theorem or proposition that came before.

Proposition 1 P(A′) = 1−P(A) for any eventA.

Proof Let A1 = A andA2 = A′ (the complement ofA). ThenA1∩A2 = /0 (that is, the
eventsA1 andA2 are disjoint), andA1∪A2 = S . So

P(A1)+P(A2) = P(A1∪A2) (Axiom 3)
= P(S)
= 1 (Axiom 2).

SoP(A′) = P(A2) = 1−P(A1) = 1−P(A).
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Once we have proved something, we can use it on the same basis as an axiom to
prove further facts.

Corollary P(A)≤ 1 for any eventA.

Proof We have 1−P(A) = P(A′) by Proposition 1, andP(A′) ≥ 0 by Axiom 1; so
1−P(A)≥ 0, from which we getP(A)≤ 1.

Remember that if you ever calculate a probability to be less than 0 or more than 1,
you have made a mistake!

Corollary P( /0) = 0.

Proof For /0 = S ′, soP( /0) = 1−P(S) by Proposition 1; andP(S) = 1 by Axiom 2,
soP( /0) = 0.

Here is another result.

Proposition 2 If A⊆ B, thenP(A)≤ P(B).

Proof TakeA1 = A, A2 = B\A. Again we haveA1∩A2 = /0 (since the elements of
B\A are, by definition, not inA), andA1∪A2 = B. So by Axiom 3,

P(A1)+P(A2) = P(A1∪A2) = P(B).

In other words,P(A)+P(B\A) = P(B). Now P(B\A)≥ 0 by Axiom 1; so

P(A)≤ P(B),

as we had to show.

Finite number of outcomes

Although theoutcome xis not the same as theevent{x}, we are often lazy and write
P(x) where we should writeP({x}).

Proposition 3 If the eventB contains only a finite number of outcomes, sayB =
{b1,b2, . . . ,bn}, then

P(B) = P(b1)+P(b2)+ · · ·+P(bn).
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Proof To prove the proposition, we define a new eventAi containing only the outcome
bi , that is, Ai = {bi}, for i = 1, . . . ,n. ThenA1, . . . ,An are pairwise disjoint (each
contains only one element, which is in none of the others), andA1∪A2∪·· ·∪An = B;
so by Axiom 3, we have

P(B) = P(A1)+P(A2)+ · · ·+P(An) = P(b1)+P(b2)+ · · ·+P(bn).

Corollary If the sample spaceS is finite, sayS = {s1, . . . ,sn}, then

P(s1)+P(s2)+ · · ·+P(sn) = 1.

Proof For P(s1) + P(s2) + · · ·+ P(sn) = P(S) by Proposition 3, andP(S) = 1 by
Axiom 2.

Now we see that, if all then outcomes are equally likely, and their probabilities
sum to 1, then each has probability 1/n, that is, 1/|S |. Now going back to Proposi-
tion 3, we see that,if all outcomes are equally likely, then

P(A) =
|A|
|S |

for any eventA, justifying the principle we used earlier.

Inclusion-Exclusion Principle�
�

�
�

�
�

�
�A B

A Venn diagram for two setsA andB suggests that, to find the size ofA∪B, we
add the size ofA and the size ofB, but then we have included the size ofA∩B twice,
so we have to take it off. In terms of probability:

Proposition 4 For any two eventsA andB:

P(A∪B) = P(A)+P(B)−P(A∩B).

Proof We now prove this from the axioms, using the Venn diagram as a guide. We
see thatA∪B is made up of three parts, namely

A1 = A∩B, A2 = A\B, A3 = B\A.
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Indeed we do haveA∪B = A1∪A2∪A3, since anything inA∪B is in both these sets
or just the first or just the second. Similarly we haveA1∪A2 = A andA1∪A3 = B.

The setsA1,A2,A3 are pairwise disjoint. (We have three pairs of sets to check.
Now A1∩A2 = /0, since all elements ofA1 belong toB but no elements ofA2 do. The
arguments for the other two pairs are similar – you should do them yourself.)

So, by Axiom 3, we have

P(A) = P(A1)+P(A2),
P(B) = P(A1)+P(A3),

P(A∪B) = P(A1)+P(A2)+P(A3).

Substituting from the first two equations into the third, we obtain

P(A∪B) = P(A1)+(P(A)−P(A1))+(P(B)−P(A1))
= P(A)+P(B)−P(A1)
= P(A)+P(B)−P(A∩B)

as required.

The Inclusion-Exclusion Principle extends to more than two events, but gets more
complicated. Here it is for three events.

�
�

�
�

�
�

�
�

�
�

�
�A B

C

To calculateP(A∪B∪C), we first add upP(A), P(B), andP(C). The parts in com-
mon have been counted twice, so we subtractP(A∩B), P(A∩C) andP(B∩C). But
then we find that the outcomes lying in all three sets have been taken off completely,
so must be put back, that is, we addP(A∩B∩C).

Proposition 5 For any three eventsA, B, C, we have

P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C).

Proof PutD = A∪B. Then Proposition 4 shows that

P(A∪B∪C) = P(D∪C)
= P(D)+P(C)−P(D∩C)
= P(A∪B)+P(C)−P(D∩C)
= P(A)+P(B)−P(A∩B)+P(C)−P(D∩C),
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using Proposition 4 again.
The distributive law (see below, and also the Phrasebook) tells us that

D∩C = (A∪B)∩C = (A∩C)∪ (B∩C),

so yet another use of Proposition 4 gives

P(D∩C) = P((A∩C)∪ (B∩C))
= P(A∩C)+P(B∩C)−P((A∩B)∩ (B∩C))
= P(A∩C)+P(B∩C)−P(A∩B∩C).

Substituting this into the previous expression forP(A∪B∪C) gives the result.

Can you extend this to any number of events?

Other results about sets

There are other standard results about sets which are often useful in probability theory.
Here are some examples.

Proposition Let A,B,C be subsets ofS .

Distributive laws: (A∩B)∪C = (A∪C)∩ (B∪C) and
(A∪B)∩C = (A∩C)∪ (B∩C).

De Morgan’s Laws: (A∪B)′ = A′∩B′ and(A∩B)′ = A′∪B′.

We will not give formal proofs of these. You should draw Venn diagrams and
convince yourself that they work. You should also look in the Phrasebook.
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