QUEEN MARY, UNIVERSITY OF LONDON

MAS 108

Probability I

Mathematical notation

Autumn 2005

Numbers

Notation	Meaning	Example
\mathbb{N}	Natural numbers	1,2,3,
		(some people include 0)
\mathbb{Z}	Integers	$\dots, -2, -1, 0, 1, 2, \dots$
\mathbb{R}	Real numbers	$\frac{1}{2},\sqrt{2},\pi,\ldots$
	modulus	$\bar{ 2 } = 2, -3 = 3$
$\begin{vmatrix} a/b \text{ or } \frac{a}{b} \\ a \mid b \end{vmatrix}$	a over b	12/3 = 4, 2/4 = 0.5
	a divides b	4 12
$^{m}C_{n}$ or $\binom{m}{n}$	<i>m</i> choose <i>n</i>	${}^{5}C_{2} = 10$
n!	n factorial	5! = 120
$\sum_{i=a}^{b} x_i$	$x_a + x_{a+1} + \dots + x_b$	$\sum_{i=1}^{3} i^2 = 1^2 + 2^2 + 3^2 = 14$

Sets

Notation	Meaning	Example
{}	a set	{1,2,3}
		NOTE: $\{1,2\} = \{2,1\}$
$x \in A$	x is an element of the set A	$2 \in \{1, 2, 3\}$
$\{x:\}$ or $\{x \}$	the set of all x such that	${x: x^2 = 4} = {-2, 2}$
A	cardinality of A	$ \{1,2,3\} = 3$
	(number of elements in A)	
$A \cup B$	A union B	$ \{1,2,3\} \cup \{2,4\} = \{1,2,3,4\} $
	(set of elements in either A or B)	
$A \cap B$	A intersection B	$\{1,2,3\} \cap \{2,4\} = \{2\}$
	(set of elements in both A and B)	
$A \setminus B$	set difference	$\{1,2,3\} \setminus \{2,4\} = \{1,3\}$
	(set of elements in A but not B)	
$A \subseteq B$	A is a subset of B (or equal)	$\{1,3\} \subseteq \{1,2,3\}$
A'	complement of A	everything not in A
Ø	empty set (no elements)	$\{1,2\} \cap \{3,4\} = \emptyset$
(x,y)	ordered pair	NOTE: $(1,2) \neq (2,1)$
$A \times B$	Cartesian product	$\{1,2\} \times \{1,3\} =$
	(set of all ordered pairs)	$\{(1,1),(2,1),(1,3),(2,3)\}$

The Greek alphabet

Name	Capital	Lowercase
alpha	А	α
beta	В	β
gamma	Γ	γ
delta	Δ	δ
epsilon	Е	ε
zeta	Ζ	ζ
eta	Н	η
theta	Θ	θ
iota	Ι	1
kappa	Κ	κ
lambda	Λ	λ
mu	М	μ
nu	Ν	v
xi	Ξ	ξ
omicron	0	0
pi	П	π
rho	Р	ρ
sigma	Σ	σ
tau	Т	τ
upsilon	Ŷ	υ
phi	Φ	ϕ
chi	Х	X
psi	Ψ	Ψ
omega	Ω	ω

Probability and random variables

When mathematicians run out of symbols, they often turn to the Greek alphabet for more. You don't need to learn this; keep it for reference. Apologies to Greek students: you may not recognise this, but it is the Greek alphabet that

mathematicians use!

In the table, *A* and *B* are events, *X* and *Y* are random variables. Notation for specific random variables is given on the information sheets "Discrete random variables" and "Continuous random variables".

Notation	Meaning
P(A)	probability of A
$P(A \mid B)$	conditional probability of A given B
X = Y	the values of <i>X</i> and <i>Y</i> are equal
$X \sim Y$	X and Y have the same distribution
	(that is, same p.m.f. or same p.d.f.)
E(X)	expected value of X
Var(X)	variance of X
$\operatorname{Cov}(X,Y)$	covariance of X and Y
$\operatorname{corr}(X,Y)$	correlation coefficient of X and Y