University of London

MAS 108
Discrete random variables

Probability I

Summary

Bernoulli random variable Bernoulli (p)

- Occurs when there is a single trial with a fixed probability p of success.
- Takes only the values 0 and 1 .
- p.m.f. $P(X=0)=q, P(X=1)=p$, where $q=1-p$.
- $E(X)=p, \operatorname{Var}(X)=p q$.
- The indicator function of an event is a Bernuolli random variable.

Binomial random variable $\operatorname{Bin}(n, p)$ (Lindley and Scott, Table 1)

- Occurs when we are counting the number of successes in n independent trials with fixed probability p of success in each trial, e.g. the number of heads in n coin tosses. Also, sampling with replacement from a population with a proportion p of distinguished elements.
- The sum of n independent $\operatorname{Bernoulli}(p)$ random variables.
- Values $0,1,2, \ldots, n$.
- p.m.f. $P(X=m)={ }^{n} \mathrm{C}_{m} q^{n-m} p^{m}$ for $0 \leq m \leq n$, where $q=1-p$.
- $E(X)=n p, \operatorname{Var}(X)=n p q$.

Geometric random variable $\operatorname{Geom}(p)$

- Describes the number of trials up to and including the first success in a sequence of independent Bernoulli trials, e.g. number of tosses until the first head when tossing a coin.
- Values $1,2, \ldots$ (any positive integer).
- p.m.f. $P(X=m)=q^{m-1} p$, where $q=1-p$.
- $E(X)=1 / p, \operatorname{Var}(X)=q / p^{2}$.

Hypergeometric random variable $\mathrm{Hg}(n, M, N)$

- Occurs when we are sampling n elements without replacement from a population of N elements of which M are distinguished. The random variable is the number of distinguished elements in the sample.
- Values $0,1,2, \ldots, n$ (except that the smallest value is $n-N+M$ if $N-M<n$ and the largest value is M if $M<n$).
- p.m.f. $P(X=m)=\left({ }^{M} \mathrm{C}_{m} \cdot{ }^{N-M} \mathrm{C}_{n-m}\right) /{ }^{N} \mathrm{C}_{n}$.
- $E(X)=n\left(\frac{M}{N}\right), \operatorname{Var}(X)=n\left(\frac{M}{N}\right)\left(\frac{N-M}{N}\right)\left(\frac{N-n}{N-1}\right)$.
- Approximately $\operatorname{Bin}(n, M / N)$ if n is small compared to $N, M, N-M$.

Poisson random variable Poisson (λ) (Lindley and Scott, Table 2)

- Describes the number of occurrences of a random event in a fixed time interval, e.g. the number of fish caught in a day.
- Values $0,1,2, \ldots$ (any non-negative integer)
- p.m.f. $P(X=m)=\mathrm{e}^{-\lambda} \lambda^{m} / m$!.
- $E(X)=\lambda, \operatorname{Var}(X)=\lambda$.
- If n is large, p is small, and $n p=\lambda$, then $\operatorname{Bin}(n, p)$ is approximately $\operatorname{Poisson}(\lambda)$.
D. V. Lindley and W. F. Scott, New Cambridge Statistical Tables, Cambridge University Press.

