University of London

MAS 108

Probability I

Solution to challenge problem

Autumn 2005
(a) Let X_{1} be the number of cereal packets needed to get a photo of the first lecturer, and let X_{2} be the number of cereal packets needed after that to get a photo of the second lecturer (here 'first' means the first one whose photo you get, not necessarily the first one I named).

Then $N=X_{1}+X_{2}$ so $E(N)=E\left(X_{1}\right)+E\left(X_{2}\right)$.
But $X_{1}=1$ so $E\left(X_{1}\right)=1$ so $E(N)=1+E\left(X_{2}\right)$.
After the first photo has been obtained, each cereal packet has probability $1 / 2$ of containing the other, so $X_{2} \sim \operatorname{Geom}(1 / 2)$ and so $E\left(X_{2}\right)=2$.

Therefore $E(N)=1+2=3$.
(b) As above, $E(M)=1+E\left(X_{2}\right)$.

To find $E\left(X_{2}\right)$, we need to condition on the first photo. Let S be the event that the first photo is of Dr. Soicher. Then $P(S)=9 / 10$ and $P\left(S^{\prime}\right)=1 / 10$.

Now, $X_{2} \mid S \sim \operatorname{Geom}(1 / 10)$ so $E\left(X_{2} \mid S\right)=10$, and $X_{2} \mid S^{\prime} \sim \operatorname{Geom}(9 / 10)$ so $E\left(X_{2} \mid S^{\prime}\right)=10 / 9$. Therefore

$$
\begin{aligned}
E\left(X_{2}\right) & =P(S) E\left(X_{2} \mid S\right)+P\left(S^{\prime}\right) E\left(X_{2} \mid S^{\prime}\right) \\
& =\frac{9}{10} \times 10+\frac{1}{10} \times \frac{10}{9}=\frac{82}{9} .
\end{aligned}
$$

Hence

$$
E(M)=1+\frac{82}{9}=\frac{91}{9} .
$$

(c) If you want collectors to buy a large number of packets, make one of the items have a much lower probability than the rest.

