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3.5 Efficiency factors

For comparison we consider a complete-block design where the variance of each
response is%BD. In such a design\ = rJg andk =t, so Equation (3.3) gives

L=r(lo—t"1Jo).
Now, (lg —t~1Jg) is the projector onthoL, SO

1
L™ =2(lo—t""Je)
and the variance of the estimatondif is (XL ~x)025p, which is equal to ~1xX'x02 gp.

Definition The efficiencyfor a contrasi in an equi-replicate incomplete-block
design with variance? and replicatiorr relative to a complete-block design with
varianceo2g and the same replication is

/ 2
rx'L—x o2

and theefficiency factoffor x is
X'X
rx'L—x
If x is the simple contrast for the difference between treatm@atsdn then
Xx=2. Thus

— 2 o?

\Bdﬁm—ﬁﬁﬂ):Femdamymmonx

(3.4)

Example 3.1 revisited Herer = 2, so the efficiency factor for a simple contrast is
o?/variance. Thus the efficiency factor for the simple contgast X2 is 1 while
the efficiency factor for the simple contragt— X3 is 6/7.
Whenx = X1+ X2 — X3 — X4 thenxX'x =4 and Va(xTT) = 802/3, so the effi-
ciency factor forx is
4 3 3
2"8" 4
We want estimators with low variance. Efficiency is defined by comparing the
reciprocals of the variances, so that low variance corresponds to high efficiency. In
practice, neitheo? nor 62z, is known before the experiment is done. Indeed, the
usual reason for doing an experiment in incomplete blocks is that large enough
blocks are not available. Even if they are available, there may be some prior
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knowledge about the likely relative sizesaff andoZgp,. Part of the statistician’s
job in deciding what blocks to use is to assess whether theaatiod g, is likely
to be less than the ratidx/rx'L~x. The latter ratio, the efficiency factor, is a
function of the design and the contrast, so it can be used for comparing different
designs of the same size, at least for the single contrast

The efficiency factor fox has a particularly simple form ¥is an eigenvector
of L, for if Lx = puxthenx'L~x = p~1x'x and so the efficiency factor j§'r.

Definition A basic contrastof an equi-replicate incomplete-block design is a
contrast which is an eigenvector of the information maltrix

Definition Thecanonical efficiency factorsf an equi-replicate incomplete-block
design with replicatiom arepy /r, ..., k—1/r, wherepy, ..., k—1 are the eigen-
values ofL onUy-, with multiplicities.

Technique 3.1 To find the canonical efficiency factors, find the eigenvalues,of
divide byrk, subtract from 1, and ignore one of the zero values. There will always
be a zero value corresponding to the eigenvegtgrif the design is connected
then that will be the only zero value.

Once the eigenvectors and eigenvalue& @fre known, they can be used to
find the efficiency factors of all contrasts if the design is connected.

Technique 3.2 If the eigenvalues of. are known, use them to write down the
minimal polynomial ofL on (kerL)*. Hence find the Moore-Penrose generalized
inverseL~ of L. If the design is connected amds any contrast ther'L~x is not
zero, so calculate the efficiency factor foasx'x/rx’'L~x. Ignore the contribution

of JtoL~, becausdx = 0 for all contrast.

Example 3.1 revisited We have seen thdtx = 2x if X iS X1 — X2, X3 — X4 Of
X5 — Xe andLx = (3/2)xif Xis X1+ X2 — X3 — X4 Or X1+ X2 — X5 — Xe- These five
contrasts spadg-, so the eigenvalues afonU;- are 2 and 32. Thus, oriJy-,

(L—2I)(L—§I) =0,
2
whence .
L2——L+31=0
5 +
SO .
L(L—=1)= -3l

2
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and the inverse df onUy- is (1/6)(7I —2L). Thus
L™= é(?l —2L)+cJ
for some constart. If x is a contrast thedx= 0 and so
XL x= %(7x’x— 2X'LX).

In particular, ifx = x1 — X3 thenxXx =2 and

XL x = %(14_ 2(L(1,1) —L(1,3) —L(3,1) +L(3,3))) = ;,

so the efficiency factor foxs — X3 is 6/7, as we found on page 63. =

Technique 3.3 If the basic contrasts and their canonical efficiency factors are
known, express an arbitrary contrasas a sunx; + --- + Xg of basic contrasts
with different canonical efficiency factoes, ..., €. If the design is connected
then none ot4, ..., &sis zero. Since the distinct eigenspaces afre orthogonal
to each othen{L~x; = 0if i # |, so

S /

X
XL x= S 4

=1 Ei
Example 3.1 revisited Putx = X1 — X3. Thenx = X3 + Xz wherex; = (X1 — X2 —
X3+ X4)/2 andxa = (X1+ X2 — X3 —X4)/2. Butxy is a basic contrast with canon-
ical efficiency factore; = 1 andx, is a basic contrast with canonical efficiency
factore; = 3/4, so

7

4 4
XL X=XX + =XoXo = 14+ = = —
ll+322 +3 3

andX'x/rxX'L=x=6/7, as before. =

We need an overall measure of the efficiency of a design. Itis tempting to take
the arithmetic mean of the canonical efficiency factors. But

2 canonical efficiency factors= z canonical efficiency factors 0

1 .
= (> eigenvalues of)

1 1 It
= —trL=- <rt——)
r r k

= : (3.5)
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which is independent of the design. Instead we measure the overall efficiency of
the design by the harmonic mean of the canonical efficiency factors. (The har-
monic mean of a collection of positive numbers is the reciprocal of the arithmetic
mean of their reciprocals.) This overall efficiency factor is cakethot to be
confused with an adjacency matrix!). That is, if the canonical efficiency factors
aregy, ...,&_1then

t=14 -1
A=| £ &
t—1

The next theorem shows that the choice of harmonic mean is not entirely arbi-
trary.

Theorem 3.8 In a connected equi-replicate incomplete-block design with repli-
cation r, the average variance of simple contrasts is equabtty (rA).

Proof The information matrix is zero in its action &y, so the same is true of
its generalized inverse™. That is, the row and column sumslof are all zero.
Equation (3.2) shows that the average variance of simple contrasts

o? _ _ _ _
— m%e;@ (6,8)—L~(8,n) —L"(n,8)+L"(n,n))

2
_ % Zg(r(e,e) —L=(8,n) —L~(n,8)+L"(n,n))

~(6,6)+L"(n,n)) because the row and column
sums ofL™ are zero

0
— ottrL-
(-

20 1 1 .
= < NI th—) wherely, ..., k—1 are the eigenvalues of

Ha L onUg-
207
Cort-1) ( ' Ut_)
_ 20° y 1
' harmonic mean o% .. #
202

rA -
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Theorem 3.9 The canonical efficiency factors of an equi-replicate incomplete-
block design and its dual are the same, including multiplicities, apart fiomt |
values equal td.

Proof Let € be a canonical efficiency factor different from 1 for the original
design and le be a corresponding eigenvector lof ThenlLx = rex. From
Lemma 3.1 and Equation (3.3\'Nx= Ax = k(rl —L)x = kr(1—¢€)x. There-
fore NN'Nx = kr(1—€)Nx. The dual design has replicatidnand information
matrix kla —r—INN’. Now,

<kIA— %NN’) Nx = keNx

Thusx has canonical efficiency factor equaletin the original design anhix has
canonical efficiency factor equal ¢&an the dual.
The maps
1
Xx— Nx  and — N
~ y= rk(1—eg) y
are mutual inverses on the spaces of contrasts in the two designs which have
canonical efficiency facta, so the dimensions of these spaces are equal.

All remaining canonical efficiency factors of both designs must be equal taal.

Note that if the canonical efficiency factors a@xg ..., &_1 then therke; are
the zeros of the monic integer polynomial

det(xI — kL) (3.6)

in Z[x]. So eachrke; is an algebraic integer, so is either an integer or irrational.
This fact helps to identify the canonical efficiency factors exactly if a computer
program finds them numerically. Moreover,

11 13N Jilljzrke
rkzei_rk me  Mirke

both numerator and denominator are elementary symmetric functions in the zeros
of the polynomial (3.6), so they are integers. HeAds always rational.

Definition An equi-replicate incomplete-block designAsoptimalif it has the
highest value oA among all incomplete-block designs with the same valués of
r, b andk.
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3.6 Variance and efficiency in partially balanced de-
signs

Theorem 3.10 In a partially balanced incomplete-block design with non-diagonal
associate classeg, ..., (s there are constantsy, ..., Ks such that the variance
of the estimator of (8) —1(n) is equal tok;a? if (8,n) € C.

Proof By definition,\ = Ziszo)\iAi € 4soL e 4. From Section 2.2l.~ € 4.
Thus there are constants, . ..,vs such thal™ = 3> ,viAi. Now Equation (3.2)
shows that

Var(1(6) -t(n)) = (L(6,6)—L(8,n)—~L"(n,6)+L"(n.n))0?,
= (Vo—Vi—Vi+Vvo)o?  if(8,n)e G
Ki 02
with Kj =2(vo— V). =

Theorem 3.10 shows why partially balanced incomplete-block designs were
invented. To a combinatorialist the pattern of concurrences which defines par-
tial balance is interesting. To a statistician, the pattern of variances demonstrated
by Theorem 3.10 is important, far more important than combinatorial patterns.
Many statisticians are puzzled that in general incomplete-block designs the pat-
tern of variances of simple contrasts does not match the pattern of concurrences.
The technical condition abomjﬁ in the definition of association scheme is there
precisely to give Theorem 3.10. The irony is that many statisticians who are in-
terested in the pattern of variances rejectp)ha:ondition as ‘too mathematical'.

Example 3.10 In a balanced incomplete-block design=rl +A(J—1), so

- (MR ()

becausa\(t—1) =r(k—1). Thus
K 1
L =—(1-2
(7))

Equation (3.4) shows that the efficiency factor for every simple contrast is equal
to

SO

— k

t k-1

t—1 k ’
which is indeed the eigenvalue oflL on the whole ofJy. m
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Theorem 3.11 (Fisher’s Inequality) If a balanced incomplete-block design has
t treatments and b blocks thersht.

Proof If t > bthen Theorem 3.9 shows that the design has attealstcanonical
efficiency factors equal to 1. But Example 3.10 shows that no canonical efficiency
factorisequalto1inaBIBD. =

Technique 3.4 Pretending thal = O, find the inverse oL on UOL. If Lisa
polynomial in a single adjacency matr use the minimal polynomial oA on
Ug to calculate this inverse.

Example 3.7 revisited Let A be the adjacency matrix for first associates in the
triangular association schemér]. The argument at the end of Section 1.4.4, or
the parameters given in Section 1.4.1, show that

A= (2n—4)l 4+ (N—2)A+4J—A—1).

The incomplete-block design in Example 3.7 is partially balanced with respect
to the triangular association schem@, for which

A2 =21 —A+ 4.
We haveA = 3l +Aand thud = %(GI —A). If we pretend thad = O then

1 1 1
LA=Z(BA—A?) = Z(6A—2l +A) = Z(7TA-2l)
3 3 3
and so 40
LA+71) = —I.
3
Therefore 3
L™= ggA+T) +cd

for somec. If 8 andn are first associates then the variance of the estimator of

1(0) —1(n) is
, 3 oy 90%
20 ><—40><(7 1)——10,

otherwise it is 2&2/20.
Each treatment has six first associates and three second associates, so the av-
erage variance of simple contrasts is

1902
20

1 9 1802+2102
3 20 20

By Theorem 3.8, the harmonic mean efficiency fagtés equal to 4057. =
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Theorem 3.12In a partially balanced incomplete-block design, the strata (in
RR®) are sub-eigenspaces of the information matrix, and the canonical efficiency
factors are

1 S
1-—Y AC(i,e)
rk i;

with multiplicity d, for e in €\ {0}, where C is the character table of the associ-
ation scheme.

Proof We have

1 13
L=rl —E/\_rl —l—(i;)\.A..

If xis in the stratuntJe thenAjx = C(i,e)x and so

1 S
Lx=rx—= Y AC(i,e)x. =
ki;

Example 3.11 Consider nine treatments in a<3 square, forming the Hamming
association scheme(B, 3). The nine blocks of shape

X |k

give a partially balanced incomplete-block design withb =9,k =4, A\g =4,
)\1 =1 and)\2 =2.

Now AZ = 41 +Aq +2A; = 4l + A1 +2(J— | — Ay). IgnoringJ, we getA2 +
A1 —2l =0so0(A1+2l)(AL—1) = 0. This leads to the character table

1) (4 (4
Ao =4 Oth associates(1) 1 1 1
A1=1 1stassociates(4) | 4 -2 1
A2=2 2ndassociates(4) | 4 1 -2

We use Theorem 3.12 on the three columns of the character table:

1 .
1- —(4+4+2x4) = 0, asitmustdo,

16
1 3
15

1
1-2(4+14+2x(-2) = T
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Thus the canonical efficiency factors argt3and 1516, with multiplicity 4 each,

and L
4 16\
A_[3T15) _°
2 6

Technique 3.5 Even if you do not remember the whole character table for an
association scheme, do remember its strata. Find the canonical efficiency factor
for each stratum by applyingy to any vector in that stratum.

Example 3.12 The group-divisible design in Example 3.4 Has- 3,r = 2 and
groupsa, f || b,e|| c,d ||. The concurrence matrix is

b

O O M®T —+~9Q

PR P ROND
PRPRPRPNO —
PRPONPR R

PR NORRO®D
ONRRRELRRO
NORRRRELRO

One within-groups vector i — X, Which is an eigenvector ok with eigen-
value 2. So the within-groups canonical efficiency factor is equaH@/6 = 2/3,
with multiplicity 3. One between-groups vectoryg+ Xt — Xp — Xe- This is an
eigenvector ofA with eigenvalue 0, so the between-groups canonical efficiency
factor is equal to 1, with multiplicity 2.

The dual design is balanced, with all canonical efficiency factors eq@:kto
3 = £, as shown in Example 3.10. This agrees with Theorem 3.

Technique 3.6 If you remember the stratum projectors for the association scheme,
expresd. in terms of them. The coefficients of the projectors are the eigenvalues
of L. Moreover,L™ is obtained by replacing each non-zero coefficient by its re-
ciprocal.

Example 3.12 revisited As we saw in Section 2.3, it is useful to &t be the
adjacency matrix for the relation “is in the same group as”. Then the stratum

projectors are

1 1 1 1
6\], EG— 6-.] and | — EG,

with corresponding dimensions 1, 2 and 3 respectively. Now, 2l 4 (J—G) so

1 4 -J+G 4 1 1 1
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(Note that the coefficient af-1J mustbe zero, so here is a check on the arith-
metic.) From this we read off the eigenvalued.dds 4/3 and 2, with multiplici-

ties 3 and 2 respectively. Dividing these by 2 gives the canonical efficiency factors
2/3 and 1 that we found before.

Moreover,
_ 3 1 1/1 1
L _Z(l —§G>+§(§G—6J>.

For treatments that are first associates, the relevar2 ubmatrices o andJ
are both equal to
11
i)

which make no contribution to the variance of the difference, which is therefore
equal to 2« (3/4)a® = (3/2)a?. This agrees with what we already know, because
we have already found that the efficiency factor for the simple contrast of first
associates is equal tg2. From Equation (3.4), the variance is equal to

2o
r efficiency factor

which is equal to
2 302
22
in this case.
For treatments that are second associates we can still ignbue the relevant
2 x 2 submatrices ofs andl are both equal to

o)

so the variance of the difference is equal to

3 1 1/1 5
2|-(1—= —| = 2 _ g2
2(1-3)+3 ()] %
Each treatment has one first associate and four second associates, so the aver-
age variance of simple contrasts is
3 5
2t4x3 2 13,
5 10
We can also calculat& directly as
3 —l
A— 3x 5 + 2x1 . 10
N 5 13

The values oA and of the average variance are in agreement with Theorem &8.
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Technique 3.7 Calculate the canonical efficiency factors and then check the arith-
metic by verifying that Equation (3.5) holds. Alternatively, if there is one stratum
whose vectors are more difficult for calculations, then find the other canonical
efficiency factors and deduce the missing canonical efficiency factor from Equa-
tion (3.5); that is .

Z de€e = t<kk 1)7
e=1

wheregg is the canonical efficiency factor for stratuse.




