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3.3 Random variables

This section is a very brief recall of the facts we need about random variables. |
will not attempt to explain what they are.

Given a sef’, suppose that there are random variaMég, for yin I', with
a joint distribution. Then functions of two or more of these, suclY @s)Y (),
are also random variables. The componafiig can be assembled into a random
vectory.

The random variabl¥(y) has arexpectatiorE(Y(y)) in R. (I assume that the
sum or integral which defines the expectation does converge for all the random
variables that we consider.) Then we defit@) in R" by

E(Y)(y) =E(Y(y)).
The main result we need about expectation is the following.

Proposition 3.3 Expectation isaffinein the sense that if Mt R2<" and f e R?
then
E(MY +f) =ME(Y) + f.

Thecovarianceof random variable¥ (o) andY () is defined by
cov(Y(a),Y(B)) = E[(Y (o) —E(Y(a))) (Y(B) —E(Y(B)))]-

The covariance of (a) with itself is called thevarianceof Y (a), written Var(Y (a)).
Thecovariance matrixCov(Y) of the random vectoy is defined by

Cov(Y)(a,B) =cov(Y(a),Y(B)).
Lemma 3.4 Covariance isi-affinein the sense that
(i) if g € R thenCow(Y +g) = Cov(Y);
(i) if M € RA*T thenCov(MY) = M Cov(Y)M'.

Proof (i) PutZ=Y +g. TheE(Z) = E(Y) +g, by Proposition 3.3, s& —
E(Z) =Y —E(Y), in particularZ(a) —E(Z(a)) =Y (a) —E(Y(a)).

(i) By (i), we can assume th&(Y) = 0. Then
Cov(MY)(a,B) = OV((MY)(O() ( )(B)
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= z;wa,w [E(Y(Y)Y(3))]M'(3,B)
Y

= 5 > M(a,y) Cov(Y)(y,5)M'(3,B)
Y O

= (MCov(Y)M) (0,B). =

3.4 Estimation and variance

Put
Vg = {v e R?:v(a) = v(B) if a andp are in the same bloc%k

Then the characteristic functions of the blocks form an orthogonal basig feo
dimVg = b. Also

weVg <= 5 w(a)=0 foreach blocid.
aeod

Let P andQ be the orthogonal projectors ontg andVy. It can be easily checked
thatP =k 1BandQ=1—P.

LetY(w) be the response on platwhen our incomplete-block design is used
for an experiment. We assume that

E(Y) = Xt+h,
wheret is an unknown vector ifR® andh is an unknown vector iNg, and
Cov(Y) =102,

wherea? is an unknown positive constant. That is, the expectatio¥ (of) is
the sum of two parts, one depending on the treatment appliedaied the other
depending on the block containing and the responses on different plots are
uncorrelated and all have the same variance.

We want to use the observed values of Y{eo) from the experiment to esti-
matert.

In R®, letUq be the space spanned jy. Now

XXo = Xa € VB,

S0 we cannot estimate the best we can hope to do is to estimatp to a multiple
of Xe. Then we could estimate differences such@ —1(n).

Definition A vectorxin R® is acontrastif x € Ug". Itis asimplecontrast if there
aref, n in ® such tha(6) = 1,x(n) = —1 andx({) =0for{ in ©®\ {6,n}.
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We want to estimate linear combinations suchyax(0)t(6) for x in Ug".
In order to use the results of the previous section in a straightforward way, it is
convenient to make a slight shift of perspective on our vectors. | have defined
to be a function from® to R. However, the definitions of the action of a matrix
on a vector, and of matrix multiplication, are consistent with the ideaxlima
column vector, that is, an element®P*{1}. So we can define the transposexof
as a matrix< in R1%*®_ Then

> x(6)1(8) = (x,1) =XT.
6co

Definition An unbiased estimatdor X't is a function ofY and of the design (but
not of T, h or 62) whose expectation is equalxtr.

Theorem 3.5 If there is a vector z ifR® with X’QXz= x then 2X'QY is an
unbiased estimator forkand its variance is’X’'QX z2.

Proof

E(ZX'QY) = ZX'QE(Y), by Proposition 3.3,
= ZX'Q(Xt+h)
ZX'QXr, becaus&h=0,
X1

becaus€) = Q. Then, by Lemma 3.4,
Var(ZX'QY) = ZX'Q(lo®)Q'Xz
= (ZX'Q?X2)0?
ZX'QXx?
becaus&) is idempotent. =

Theorem 3.6 The kernel of XQX is spanned by the characteristic functions of
the connected components of the treatment-concurrence graph.

Proof LetzbeinR®. If ze kerX’QXthen(QXz QX2 =ZX'Q'QXz=ZX'QXz=
0; but( , ) is an inner product, sSQXz= 0. Thus

z < kerX'QX QXz=0

PXz= Xz

XzeVp

z(8) = z(n) whenever\(6,n) >0

z is constant on each component of the
treatment-concurrence grapha

11117
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Corollary 3.7 If an incomplete-block design is connected thaiX'QX) = Ug".

Proof If the design is connected then REQX = Uy. But X’QX is symmetric,
so ImX'QX) = (kerX'QX):. =

Definition The matrixX'QX is theinformation matrixof the design. Writd. =
X'QX.

The matrixkL is sometimes called tHeaplacian particularly wherk = 2.
Theorem 3.5 says thatliz= x thenZ X QY is an unbiased estimator xf with
varianceZLzo?. Recall from Section 2.2 thathas a generalized inverke such
thatLL L = L. ThusZLzo? = ZLL Lzo? = XL~x0? becausd. is symmetric,
so we obtain an expression for the variance of the estimatgah terms ofx
rather thare. In particular, if the design is connected then we can estimate every
differencet(0) —t(n) and the variance of the estimator is

o —

Var(t(8) —1(n)) = (L~ (8.6) =L~ (8.n) =L~ (n,8) +L-(n,n)) 0>, (32)

where we have used the statisticians’ notation for an estimator.
In an equi-replicate block design,

L=X'QX = X/(I-P)X
X'X —k IX'BX
= rlg—k A, (3.3)

Example 3.1 revisited Let x = X1 — X2. Since treatments 1 and 2 always occur
together in a blockiNx= 0. We say thax s “orthogonal to blocks” to indicate that
S aes(XX)(a) = 0 for every blockd; that is,Xx € Vig- andPXx= 0. Equivalently,
the 1- and 2-rows of\ are identical, sé\x = 0.

Now Equation (3.3) givekx = rx = 2x so we may take = %x in Theorem 3.5.
ThenZX'QY = $XX'QY = 3XX'(I — P)Y = $xXX'Y so we estimate(1) —1(2)
by

Y (w1) — Y () +Y(05) — Y (wp)
> .

In other words, we take the difference between the response on treatments 1 and

2 in each block where they occur, and average these differences. The variance of
this estimator i§0? + 02 + 02 4 02) /22 = 02,




62

Now putx = X1 — X3. This contrast is not orthogonal to blocks, so we will
have to do some explicit calculations. We have

221111 6 -2 -1 -1 -1 -1
221111 2 6 -1 -1 -1 -1
Ly tft12211] 1]-1-1 6 -2 -1 -1
4112211 4|/-1-1-2 6-1-1
111122 -1 -1 -1 -1 6 -2
(1111 2 2] | -1 -1 -1 -1 -2 6

Putz= %2(7)(1 + X2 — 7X3 — X4). Direct calculation shows thatz = x, so we
estimatet(1) — t1(3) by ZX'QY. Now, the effect ofQ is to subtract the block
average from every entry in a block, so

12ZX'QY = 7Y(w1) +Y(ay) —7Y(wg) — Y (0s)
+5Y (ws) — Y (we) — 2Y (007) — 2Y (wg)
— 5Y(wg) + Y (wr0) + 2Y (11) + 2Y (w12).

Now the response oeveryplot contributes to the estimator ofl) — 1(3), whose
variance is
2 2
o 70
ﬁ(72+12+72+12+52+12+22+22+52+12+22+22) =5
Since so many more responses are involved, it is, perhaps, not surprising that this
variance is greater than the variance of the estimataf bf— 1(2). (This issue
will be discussed in Section?.)
Finally, we look at a non-simple contrast. Put X1 + X2 — X3 — X4. Direct
calculation shows thdtx = %x, so the estimator of(1) +1(2) — 1(3) — 1(4) is
(2/3)XX'QY, which is

2Y (1) +2Y () — 2Y (w3) — 2Y (wg)
3 +Y(0s) +Y(we) —Y(wr) —Y(ws)
—Y (o) —Y (o) +Y(wr11) +Y(wn2)

This is the sum of the estimators ofl) — 1(3) and 1(2) — t(4), which is no
surprise, because estimation is lineaxirts variance i§8/3)c%. =



