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3.3 Random variables

This section is a very brief recall of the facts we need about random variables. I
will not attempt to explain what they are.

Given a setΓ, suppose that there are random variablesY(γ), for γ in Γ, with
a joint distribution. Then functions of two or more of these, such asY(α)Y(β),
are also random variables. The componentsY(γ) can be assembled into a random
vectorY.

The random variableY(γ) has anexpectationE(Y(γ)) in R. (I assume that the
sum or integral which defines the expectation does converge for all the random
variables that we consider.) Then we defineE(Y) in RΓ by

E(Y)(γ) = E(Y(γ)).

The main result we need about expectation is the following.

Proposition 3.3 Expectation isaffine in the sense that if M∈ R∆×Γ and f ∈ R∆

then
E(MY + f ) = ME(Y)+ f .

Thecovarianceof random variablesY(α) andY(β) is defined by

cov(Y(α),Y(β)) = E [(Y(α)−E(Y(α)))(Y(β)−E(Y(β)))] .

The covariance ofY(α) with itself is called thevarianceof Y(α), written Var(Y(α)).
Thecovariance matrixCov(Y) of the random vectorY is defined by

Cov(Y)(α,β) = cov(Y(α),Y(β)) .

Lemma 3.4 Covariance isbi-affine in the sense that

(i) if g ∈ RΓ thenCov(Y +g) = Cov(Y);

(ii) if M ∈ R∆×Γ thenCov(MY) = M Cov(Y)M′.

Proof (i) Put Z = Y + g. TheE(Z) = E(Y) + g, by Proposition 3.3, soZ−
E(Z) = Y−E(Y), in particularZ(α)−E(Z(α)) = Y(α)−E(Y(α)).

(ii) By (i), we can assume thatE(Y) = 0. Then

Cov(MY)(α,β) = cov((MY)(α),(MY)(β))
= E[((MY)(α))((MY)(β))]

= E

[(
∑
γ∈Γ

M(α,γ)Y(γ)

)(
∑
δ∈Γ

M(β,δ)Y(δ)

)]
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= ∑
γ

∑
δ

M(α,γ) [E(Y(γ)Y(δ))]M′(δ,β)

= ∑
γ

∑
δ

M(α,γ)Cov(Y)(γ,δ)M′(δ,β)

=
(
M Cov(Y)M′

)
(α,β).

3.4 Estimation and variance

Put
VB =

{
v∈ RΩ : v(α) = v(β) if α andβ are in the same block

}
.

Then the characteristic functions of the blocks form an orthogonal basis forVB, so
dimVB = b. Also

w∈V⊥B ⇐⇒ ∑
α∈δ

w(α) = 0 for each blockδ.

Let P andQ be the orthogonal projectors ontoVB andV⊥B . It can be easily checked
thatP = k−1B andQ = I −P.

LetY(ω) be the response on plotω when our incomplete-block design is used
for an experiment. We assume that

E(Y) = Xτ +h,

whereτ is an unknown vector inRΘ andh is an unknown vector inVB, and

Cov(Y) = Iσ2,

whereσ2 is an unknown positive constant. That is, the expectation ofY(ω) is
the sum of two parts, one depending on the treatment applied toω and the other
depending on the block containingω; and the responses on different plots are
uncorrelated and all have the same variance.

We want to use the observed values of theY(ω) from the experiment to esti-
mateτ.

In RΘ, letU0 be the space spanned byχΘ. Now

XχΘ = χΩ ∈VB,

so we cannot estimateτ: the best we can hope to do is to estimateτ up to a multiple
of χΘ. Then we could estimate differences such asτ(θ)− τ(η).

Definition A vectorx inRΘ is acontrastif x∈U⊥0 . It is asimplecontrast if there
areθ, η in Θ such thatx(θ) = 1, x(η) =−1 andx(ζ) = 0 for ζ in Θ\{θ,η}.
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We want to estimate linear combinations such as∑θ x(θ)τ(θ) for x in U⊥0 .
In order to use the results of the previous section in a straightforward way, it is
convenient to make a slight shift of perspective on our vectors. I have definedx
to be a function fromΘ to R. However, the definitions of the action of a matrix
on a vector, and of matrix multiplication, are consistent with the idea thatx is a
column vector, that is, an element ofRΘ×{1}. So we can define the transpose ofx
as a matrixx′ in R{1}×Θ. Then

∑
θ∈Θ

x(θ)τ(θ) = 〈x,τ〉= x′τ.

Definition An unbiased estimatorfor x′τ is a function ofY and of the design (but
not of τ, h or σ2) whose expectation is equal tox′τ.

Theorem 3.5 If there is a vector z inRΘ with X′QXz= x then z′X′QY is an
unbiased estimator for x′τ and its variance is z′X′QXzσ2.

Proof

E(z′X′QY) = z′X′QE(Y), by Proposition 3.3,

= z′X′Q(Xτ +h)
= z′X′QXτ, becauseQh= 0,

= x′τ

becauseQ′ = Q. Then, by Lemma 3.4,

Var(z′X′QY) = z′X′Q(Iσ2)Q′Xz

= (z′X′Q2Xz)σ2

= z′X′QXzσ2

becauseQ is idempotent.

Theorem 3.6 The kernel of X′QX is spanned by the characteristic functions of
the connected components of the treatment-concurrence graph.

Proof Letzbe inRΘ. If z∈ kerX′QX then〈QXz,QXz〉= z′X′Q′QXz= z′X′QXz=
0; but〈 , 〉 is an inner product, soQXz= 0. Thus

z∈ kerX′QX ⇐⇒ QXz= 0

⇐⇒ PXz= Xz

⇐⇒ Xz∈VB

⇐⇒ z(θ) = z(η) wheneverΛ(θ,η)> 0

⇐⇒ z is constant on each component of the
treatment-concurrence graph.
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Corollary 3.7 If an incomplete-block design is connected thenIm(X′QX) = U⊥0 .

Proof If the design is connected then kerX′QX = U0. But X′QX is symmetric,
so Im(X′QX) = (kerX′QX)⊥.

Definition The matrixX′QX is theinformation matrixof the design. WriteL =
X′QX.

The matrixkL is sometimes called theLaplacian, particularly whenk = 2.
Theorem 3.5 says that ifLz= x thenz′XQY is an unbiased estimator ofx′τ with

variancez′Lzσ2. Recall from Section 2.2 thatL has a generalized inverseL− such
that LL−L = L. Thusz′Lzσ2 = z′LL−Lzσ2 = x′L−xσ2 becauseL is symmetric,
so we obtain an expression for the variance of the estimator ofx′τ in terms ofx
rather thanz. In particular, if the design is connected then we can estimate every
differenceτ(θ)− τ(η) and the variance of the estimator is

Var( ̂τ(θ)− τ(η)) =
(
L−(θ,θ)−L−(θ,η)−L−(η,θ)+L−(η,η)

)
σ2, (3.2)

where we have used the statisticians’ notation̂ for an estimator.
In an equi-replicate block design,

L = X′QX = X′(I −P)X
= X′X−k−1X′BX

= rIΘ−k−1Λ. (3.3)

Example 3.1 revisited Let x = χ1−χ2. Since treatments 1 and 2 always occur
together in a block,Nx= 0. We say thatx is “orthogonal to blocks” to indicate that
∑α∈δ(Xx)(α) = 0 for every blockδ; that is,Xx∈V⊥B andPXx= 0. Equivalently,
the 1- and 2-rows ofΛ are identical, soΛx = 0.

Now Equation (3.3) givesLx= rx = 2x so we may takez= 1
2x in Theorem 3.5.

Thenz′X′QY = 1
2x′X′QY = 1

2x′X′(I −P)Y = 1
2x′X′Y so we estimateτ(1)− τ(2)

by
Y(ω1)−Y(ω2)+Y(ω5)−Y(ω6)

2
.

In other words, we take the difference between the response on treatments 1 and
2 in each block where they occur, and average these differences. The variance of
this estimator is(σ2 + σ2 + σ2 + σ2)/22 = σ2.
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Now put x = χ1− χ3. This contrast is not orthogonal to blocks, so we will
have to do some explicit calculations. We have

L = 2I − 1
4


2 2 1 1 1 1
2 2 1 1 1 1
1 1 2 2 1 1
1 1 2 2 1 1
1 1 1 1 2 2
1 1 1 1 2 2

=
1
4


6 −2 −1 −1 −1 −1
−2 6 −1 −1 −1 −1
−1 −1 6 −2 −1 −1
−1 −1 −2 6 −1 −1
−1 −1 −1 −1 6 −2
−1 −1 −1 −1 −2 6

 .

Put z = 1
12(7χ1 + χ2− 7χ3− χ4). Direct calculation shows thatLz = x, so we

estimateτ(1)− τ(3) by z′X′QY. Now, the effect ofQ is to subtract the block
average from every entry in a block, so

12z′X′QY = 7Y(ω1)+Y(ω2)−7Y(ω3)−Y(ω4)
+5Y(ω5)−Y(ω6)−2Y(ω7)−2Y(ω8)
−5Y(ω9)+Y(ω10)+2Y(ω11)+2Y(ω12).

Now the response oneveryplot contributes to the estimator ofτ(1)−τ(3), whose
variance is

σ2

122(72 +12 +72 +12 +52 +12 +22 +22 +52 +12 +22 +22) =
7σ2

6
.

Since so many more responses are involved, it is, perhaps, not surprising that this
variance is greater than the variance of the estimator ofτ(1)− τ(2). (This issue
will be discussed in Section??.)

Finally, we look at a non-simple contrast. Putx = χ1 + χ2−χ3−χ4. Direct
calculation shows thatLx = 3

2x, so the estimator ofτ(1) + τ(2)− τ(3)− τ(4) is
(2/3)x′X′QY, which is

1
3

 2Y(ω1)+2Y(ω2)−2Y(ω3)−2Y(ω4)
+Y(ω5)+Y(ω6)−Y(ω7)−Y(ω8)
−Y(ω9)−Y(ω10)+Y(ω11)+Y(ω12)

 .
This is the sum of the estimators ofτ(1)− τ(3) and τ(2)− τ(4), which is no
surprise, because estimation is linear inx. Its variance is(8/3)σ2.


