3.3 Random variables

This section is a very brief recall of the facts we need about random variables. I will not attempt to explain what they are.

Given a set Γ , suppose that there are random variables $Y(\gamma)$, for γ in Γ , with a joint distribution. Then functions of two or more of these, such as $Y(\alpha)Y(\beta)$, are also random variables. The components $Y(\gamma)$ can be assembled into a random vector Y.

The random variable $Y(\gamma)$ has an *expectation* $\mathbb{E}(Y(\gamma))$ in \mathbb{R} . (I assume that the sum or integral which defines the expectation does converge for all the random variables that we consider.) Then we define $\mathbb{E}(Y)$ in \mathbb{R}^{Γ} by

$$\mathbb{E}(Y)(\gamma) = \mathbb{E}(Y(\gamma)).$$

The main result we need about expectation is the following.

Proposition 3.3 *Expectation is* affine *in the sense that if* $M \in \mathbb{R}^{\Delta \times \Gamma}$ *and* $f \in \mathbb{R}^{\Delta}$ *then*

$$\mathbb{E}(MY+f) = M\mathbb{E}(Y) + f.$$

The *covariance* of random variables $Y(\alpha)$ and $Y(\beta)$ is defined by

$$\operatorname{cov}(Y(\alpha), Y(\beta)) = \mathbb{E}[(Y(\alpha) - \mathbb{E}(Y(\alpha)))(Y(\beta) - \mathbb{E}(Y(\beta)))]$$

The covariance of $Y(\alpha)$ with itself is called the *variance* of $Y(\alpha)$, written $Var(Y(\alpha))$. The *covariance matrix* Cov(Y) of the random vector Y is defined by

$$\operatorname{Cov}(Y)(\alpha,\beta) = \operatorname{cov}(Y(\alpha),Y(\beta)).$$

Lemma 3.4 Covariance is bi-affine in the sense that

- (*i*) if $g \in \mathbb{R}^{\Gamma}$ then $\operatorname{Cov}(Y+g) = \operatorname{Cov}(Y)$;
- (ii) if $M \in \mathbb{R}^{\Delta \times \Gamma}$ then $\operatorname{Cov}(MY) = M \operatorname{Cov}(Y)M'$.
- **Proof** (i) Put Z = Y + g. The $\mathbb{E}(Z) = \mathbb{E}(Y) + g$, by Proposition 3.3, so $Z \mathbb{E}(Z) = Y \mathbb{E}(Y)$, in particular $Z(\alpha) \mathbb{E}(Z(\alpha)) = Y(\alpha) \mathbb{E}(Y(\alpha))$.
 - (ii) By (i), we can assume that $\mathbb{E}(Y) = 0$. Then

$$Cov(MY)(\alpha,\beta) = cov((MY)(\alpha), (MY)(\beta))$$

= $\mathbb{E}[((MY)(\alpha))((MY)(\beta))]$
= $\mathbb{E}\left[\left(\sum_{\gamma \in \Gamma} M(\alpha,\gamma)Y(\gamma)\right)\left(\sum_{\delta \in \Gamma} M(\beta,\delta)Y(\delta)\right)\right]$

58

$$= \sum_{\gamma} \sum_{\delta} M(\alpha, \gamma) \left[\mathbb{E}(Y(\gamma)Y(\delta)) \right] M'(\delta, \beta)$$

$$= \sum_{\gamma} \sum_{\delta} M(\alpha, \gamma) \operatorname{Cov}(Y)(\gamma, \delta) M'(\delta, \beta)$$

$$= \left(M \operatorname{Cov}(Y) M' \right) (\alpha, \beta). \quad \blacksquare$$

3.4 Estimation and variance

Put

$$V_B = \left\{ v \in \mathbb{R}^{\Omega} : v(\alpha) = v(\beta) \text{ if } \alpha \text{ and } \beta \text{ are in the same block} \right\}.$$

Then the characteristic functions of the blocks form an orthogonal basis for V_B , so $\dim V_B = b$. Also

$$w \in V_B^{\perp} \iff \sum_{\alpha \in \delta} w(\alpha) = 0$$
 for each block δ .

Let *P* and *Q* be the orthogonal projectors onto V_B and V_B^{\perp} . It can be easily checked that $P = k^{-1}B$ and Q = I - P.

Let $Y(\omega)$ be the response on plot ω when our incomplete-block design is used for an experiment. We assume that

$$\mathbb{E}(Y) = X\tau + h,$$

where τ is an unknown vector in \mathbb{R}^{Θ} and *h* is an unknown vector in V_B , and

$$\operatorname{Cov}(Y) = I\sigma^2$$
,

where σ^2 is an unknown positive constant. That is, the expectation of $Y(\omega)$ is the sum of two parts, one depending on the treatment applied to ω and the other depending on the block containing ω ; and the responses on different plots are uncorrelated and all have the same variance.

We want to use the observed values of the $Y(\omega)$ from the experiment to estimate τ .

In \mathbb{R}^{Θ} , let U_0 be the space spanned by χ_{Θ} . Now

$$X\chi_{\Theta} = \chi_{\Omega} \in V_B,$$

so we cannot estimate τ : the best we can hope to do is to estimate τ up to a multiple of χ_{Θ} . Then we could estimate differences such as $\tau(\theta) - \tau(\eta)$.

Definition A vector x in \mathbb{R}^{Θ} is a *contrast* if $x \in U_0^{\perp}$. It is a *simple* contrast if there are θ , η in Θ such that $x(\theta) = 1$, $x(\eta) = -1$ and $x(\zeta) = 0$ for ζ in $\Theta \setminus \{\theta, \eta\}$.

We want to estimate linear combinations such as $\sum_{\theta} x(\theta) \tau(\theta)$ for x in U_0^{\perp} . In order to use the results of the previous section in a straightforward way, it is convenient to make a slight shift of perspective on our vectors. I have defined xto be a function from Θ to \mathbb{R} . However, the definitions of the action of a matrix on a vector, and of matrix multiplication, are consistent with the idea that x is a column vector, that is, an element of $\mathbb{R}^{\Theta \times \{1\}}$. So we can define the transpose of xas a matrix x' in $\mathbb{R}^{\{1\} \times \Theta}$. Then

$$\sum_{\boldsymbol{\theta}\in\Theta} x(\boldsymbol{\theta})\boldsymbol{\tau}(\boldsymbol{\theta}) = \langle x,\boldsymbol{\tau}\rangle = x'\boldsymbol{\tau}.$$

Definition An *unbiased estimator* for $x'\tau$ is a function of Y and of the design (but not of τ , *h* or σ^2) whose expectation is equal to $x'\tau$.

Theorem 3.5 If there is a vector z in \mathbb{R}^{Θ} with X'QXz = x then z'X'QY is an unbiased estimator for $x'\tau$ and its variance is $z'X'QXz\sigma^2$.

Proof

$$\mathbb{E}(z'X'QY) = z'X'Q\mathbb{E}(Y), \quad \text{by Proposition 3.3,} \\ = z'X'Q(X\tau+h) \\ = z'X'QX\tau, \quad \text{because } Qh = 0, \\ = x'\tau$$

because Q' = Q. Then, by Lemma 3.4,

$$Var(z'X'QY) = z'X'Q(I\sigma^2)Q'Xz$$
$$= (z'X'Q^2Xz)\sigma^2$$
$$= z'X'OXz\sigma^2$$

because Q is idempotent.

Theorem 3.6 The kernel of X'QX is spanned by the characteristic functions of the connected components of the treatment-concurrence graph.

Proof Let z be in \mathbb{R}^{Θ} . If $z \in \ker X'QX$ then $\langle QXz, QXz \rangle = z'X'Q'QXz = z'X'QXz = 0$; but \langle , \rangle is an inner product, so QXz = 0. Thus

$$z \in \ker X'QX \iff QXz = 0$$

$$\iff PXz = Xz$$

$$\iff Xz \in V_B$$

$$\iff z(\theta) = z(\eta) \text{ whenever } \Lambda(\theta, \eta) > 0$$

$$\iff z \text{ is constant on each component of the treatment-concurrence graph.} \blacksquare$$

60

Corollary 3.7 If an incomplete-block design is connected then $\text{Im}(X'QX) = U_0^{\perp}$.

Proof If the design is connected then $\ker X'QX = U_0$. But X'QX is symmetric, so $\operatorname{Im}(X'QX) = (\ker X'QX)^{\perp}$.

Definition The matrix X'QX is the *information matrix* of the design. Write L = X'QX.

The matrix kL is sometimes called the *Laplacian*, particularly when k = 2.

Theorem 3.5 says that if Lz = x then z'XQY is an unbiased estimator of $x'\tau$ with variance $z'Lz\sigma^2$. Recall from Section 2.2 that *L* has a generalized inverse L^- such that $LL^-L = L$. Thus $z'Lz\sigma^2 = z'LL^-Lz\sigma^2 = x'L^-x\sigma^2$ because *L* is symmetric, so we obtain an expression for the variance of the estimator of $x'\tau$ in terms of *x* rather than *z*. In particular, if the design is connected then we can estimate every difference $\tau(\theta) - \tau(\eta)$ and the variance of the estimator is

$$\operatorname{Var}(\widehat{\tau(\theta) - \tau(\eta)}) = \left(L^{-}(\theta, \theta) - L^{-}(\theta, \eta) - L^{-}(\eta, \theta) + L^{-}(\eta, \eta)\right)\sigma^{2}, \quad (3.2)$$

where we have used the statisticians' notation for an estimator.

In an equi-replicate block design,

$$L = X'QX = X'(I - P)X$$

= $X'X - k^{-1}X'BX$
= $rI_{\Theta} - k^{-1}\Lambda.$ (3.3)

Example 3.1 revisited Let $x = \chi_1 - \chi_2$. Since treatments 1 and 2 always occur together in a block, Nx = 0. We say that *x* is "orthogonal to blocks" to indicate that $\sum_{\alpha \in \delta} (Xx)(\alpha) = 0$ for every block δ ; that is, $Xx \in V_B^{\perp}$ and PXx = 0. Equivalently, the 1- and 2-rows of Λ are identical, so $\Lambda x = 0$.

Now Equation (3.3) gives Lx = rx = 2x so we may take $z = \frac{1}{2}x$ in Theorem 3.5. Then $z'X'QY = \frac{1}{2}x'X'QY = \frac{1}{2}x'X'(I-P)Y = \frac{1}{2}x'X'Y$ so we estimate $\tau(1) - \tau(2)$ by

$$\frac{Y(\omega_1)-Y(\omega_2)+Y(\omega_5)-Y(\omega_6)}{2}.$$

In other words, we take the difference between the response on treatments 1 and 2 in each block where they occur, and average these differences. The variance of this estimator is $(\sigma^2 + \sigma^2 + \sigma^2 + \sigma^2)/2^2 = \sigma^2$.

Now put $x = \chi_1 - \chi_3$. This contrast is not orthogonal to blocks, so we will have to do some explicit calculations. We have

$$L = 2I - \frac{1}{4} \begin{bmatrix} 2 & 2 & 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 & 1 & 1 \\ 1 & 1 & 2 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 6 & -2 & -1 & -1 & -1 & -1 \\ -2 & 6 & -1 & -1 & -1 & -1 \\ -1 & -1 & 6 & -2 & -1 & -1 \\ -1 & -1 & -2 & 6 & -1 & -1 \\ -1 & -1 & -1 & -1 & 6 & -2 \\ -1 & -1 & -1 & -1 & -2 & 6 \end{bmatrix}$$

Put $z = \frac{1}{12}(7\chi_1 + \chi_2 - 7\chi_3 - \chi_4)$. Direct calculation shows that Lz = x, so we estimate $\tau(1) - \tau(3)$ by z'X'QY. Now, the effect of Q is to subtract the block average from every entry in a block, so

$$12z'X'QY = 7Y(\omega_1) + Y(\omega_2) - 7Y(\omega_3) - Y(\omega_4) + 5Y(\omega_5) - Y(\omega_6) - 2Y(\omega_7) - 2Y(\omega_8) - 5Y(\omega_9) + Y(\omega_{10}) + 2Y(\omega_{11}) + 2Y(\omega_{12}).$$

Now the response on *every* plot contributes to the estimator of $\tau(1) - \tau(3)$, whose variance is

$$\frac{\sigma^2}{12^2}(7^2+1^2+7^2+1^2+5^2+1^2+2^2+2^2+5^2+1^2+2^2+2^2)=\frac{7\sigma^2}{6}.$$

Since so many more responses are involved, it is, perhaps, not surprising that this variance is greater than the variance of the estimator of $\tau(1) - \tau(2)$. (This issue will be discussed in Section ??.)

Finally, we look at a non-simple contrast. Put $x = \chi_1 + \chi_2 - \chi_3 - \chi_4$. Direct calculation shows that $Lx = \frac{3}{2}x$, so the estimator of $\tau(1) + \tau(2) - \tau(3) - \tau(4)$ is (2/3)x'X'QY, which is

$$\frac{1}{3} \begin{pmatrix} 2Y(\omega_1) + 2Y(\omega_2) - 2Y(\omega_3) - 2Y(\omega_4) \\ +Y(\omega_5) + Y(\omega_6) - Y(\omega_7) - Y(\omega_8) \\ -Y(\omega_9) - Y(\omega_{10}) + Y(\omega_{11}) + Y(\omega_{12}) \end{pmatrix}.$$

This is the sum of the estimators of $\tau(1) - \tau(3)$ and $\tau(2) - \tau(4)$, which is no surprise, because estimation is linear in *x*. Its variance is $(8/3)\sigma^2$.