Chapter 3

Partially Balanced Incomplete-Block Designs

3.1 Block designs

Let Ω be a set of experimental units, called 'plots', to which we can apply treatments in an experiment. Suppose that Ω is partitioned into *b* blocks of *k* plots each. Define *B* in $\mathbb{R}^{\Omega \times \Omega}$ by

 $B(\alpha,\beta) = \begin{cases} 1 & \text{if } \alpha \text{ and } \beta \text{ are in the same block} \\ 0 & \text{otherwise.} \end{cases}$

Then the group divisible association scheme GD(b,k) on Ω has adjacency matrices I, B-I and J-B.

A *block design* on Ω for treatment-set Θ is a function $\phi: \Omega \to \Theta$. Strictly speaking, the design is the quadruple $(\Omega, Q, \Theta, \phi)$, where Ω is the set of plots, Q is the group divisible association scheme on Ω , Θ is the set of treatments and ϕ is the design function from Ω to Θ . We say that "treatment θ occurs on plot ω " if $\phi(\omega) = \theta$. Define the *design matrix* X in $\mathbb{R}^{\Omega \times \Theta}$ by

$$X(\omega, \theta) = \begin{cases} 1 & \text{if } \phi(\omega) = \theta \\ 0 & \text{otherwise.} \end{cases}$$

Let Δ be the set of blocks. The *incidence matrix* is the matrix N in $\mathbb{R}^{\Delta \times \Theta}$ given by

$$N(\delta, \theta) = |\{\omega \in \delta : \phi(\omega) = \theta\}|.$$

The design is *binary* if $N(\delta, \theta) \in \{0, 1\}$ for all δ in Δ and all θ in Θ . In this case we often identify block δ with $\{\theta \in \Theta : N(\delta, \theta) = 1\}$ and identify the design with the family of blocks.

The design is a *complete-block design* if it is binary and $k = |\Theta|$, so that $N = J_{\Delta,\Theta}$. It is an *incomplete-block design* if it is binary and $k < |\Theta|$, so that each block is incomplete in the sense of not containing all of the treatments.

(When Yates introduced incomplete-block designs he called them 'incomplete block designs' to contrast them with complete block designs. However, when pure mathematicians took up his term, they assumed that 'incomplete' referred to the *design* and meant that not every *k*-subset of the treatments was a block. That is why I insist on the hyphen in 'incomplete-block design'.)

The *replication* r_{θ} of treatment θ is

$$|\{\omega \in \Omega : \phi(\omega) = \theta\}|.$$

The design is *equi-replicate* if all treatments have the same replication. If there are t treatments with replication r then

$$tr = bk. \tag{3.1}$$

In such a design, X'X = rI.

The trick for remembering the parameters is that b and k are to do with **b**locks while t and r concern **tr**eatments. (In his first paper on incomplete-block designs, Yates was considering agricultural field trials to compare different varieties. So he called the treatments *varieties*, and let their number be v. This gives the mnemonic **var**ieties. In his second paper on the subject he switched to the less specific word *treatment*, and established the notation t, r, b, k used here. Statisticians have tended to follow this second usage, but pure mathematicians have retained v for the number of treatments, even though they often call them *points*.)

The *concurrence* $\Lambda(\theta, \eta)$ of treatments θ and η is

$$|\{(\alpha,\beta)\in\Omega\times\Omega:\alpha,\ \beta \text{ in the same block},\ \phi(\alpha)=\theta,\ \phi(\beta)=\eta\}|.$$

The matrix Λ is called the *concurrence matrix*. Equi-replicate block designs in which every non-diagonal concurrence is in $\{0,1\}$ are called *configurations*.

- **Lemma 3.1** (i) If the design is binary then $\Lambda(\theta, \theta)$ is equal to the replication of θ , and, for $\eta \neq \theta$, $\Lambda(\theta, \eta)$ is equal to the number of blocks in which θ and η both occur.
 - (*ii*) $\sum_{\eta \in \Theta} \Lambda(\theta, \eta) = kr_{\theta}$; *in particular, in an equi-replicate design*

$$\sum_{\substack{\boldsymbol{\eta}\in\Theta\\\boldsymbol{\eta}\neq\boldsymbol{\theta}}}\Lambda(\boldsymbol{\theta},\boldsymbol{\eta})=r(k-1).$$

(*iii*) $\Lambda = X'BX = N'N$.

Example 3.1 A small design on 12 experimental units is shown below. The set Ω consists of three blocks δ_1 , δ_2 , δ_3 of four plots each, so b = 3 and k = 4. The treatment-set Θ is {1,2,3,4,5,6}, so t = 6. The design is equi-replicate with r = 2.

	δ_1			δ_2				δ_3				
Ω	ω_1	ω_2	ω ₃	ω ₄	ω_5	ω ₆	ω ₇	ω ₈	ω9	ω_{10}	ω_{11}	ω_{12}
ø	1	2	3	4	1	2	5	6	3	4	5	6

With the plots in the obvious order, the blocks matrix *B* is given by

	[1]	1	1	1	0	0	0	0	0	0	0	0	1
<i>B</i> =	1	1	1	1	0	0	0	0	0	0	0	0	
	1	1	1	1	0	0	0	0	0	0	0	0	
	1	1	1	1	0	0	0	0	0	0	0	0	
	0	0	0	0	1	1	1	1	0	0	0	0	
	0	0	0	0	1	1	1	1	0	0	0	0	
	0	0	0	0	1	1	1	1	0	0	0	0	
	0	0	0	0	1	1	1	1	0	0	0	0	
	0	0	0	0	0	0	0	0	1	1	1	1	
	0	0	0	0	0	0	0	0	1	1	1	1	ĺ
	0	0	0	0	0	0	0	0	1	1	1	1	
	0	0	0	0	0	0	0	0	1	1	1	1	

The stratum projectors are $\frac{1}{12}J$, $\frac{1}{4}B - \frac{1}{12}J$ and $I - \frac{1}{4}B$. With the plots in the same order as above and treatments also in the obvious order, the design matrix X is given by

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Then X'X = 2I.

The incidence matrix N and concurrence matrix Λ are shown with their rows and columns labelled for clarity.

			1	2	3	4	5	6	
1 2 2	1 5 6	1	2	2	1	1	1	1	1
S F 1 1 1 2	4 3 0	2	2	2	1	1	1	1	
		3	1	1	2	2	1	1	
$N = \delta_2 \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \Lambda =$	4	1	1	2	2	1	1	
$\delta_3 \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$		5	1	1	1	1	2	2	l
		6	1	1	1	1	2	2	
			L					-	1

It is clear that $\Lambda = N'N = X'BX$.

The *dual* block design to $(\Omega, Q, \Theta, \phi)$ is obtained by interchanging the roles of Θ and Δ . So the experimental units of the dual design are still the elements of Ω , but the blocks are the sets $\phi^{-1}(\theta)$ for θ in Θ . These new blocks define a group divisible association scheme Q^* on Ω of type GD(t, r). The dual design is the quadruple $(\Omega, Q^*, \Delta, \Psi)$ where the dual design function $\Psi: \Omega \to \Delta$ is given by

 $\psi(\omega) = old block containing \omega.$

The incidence matrix for the dual design is N'.

Example 3.2 The dual of the design in Example 3.1 has treatment-set $\{\delta_1, \delta_2, \delta_3\}$. Its blocks are $\{\delta_1, \delta_2\}$, $\{\delta_1, \delta_2\}$, $\{\delta_1, \delta_3\}$, $\{\delta_1, \delta_3\}$, $\{\delta_2, \delta_3\}$ and $\{\delta_2, \delta_3\}$.

Definition The *treatment-concurrence* graph of an incomplete-block design is the (not necessarily simple) graph whose vertices are the treatments and in which the number of edges from θ to η is $\Lambda(\theta, \eta)$ if $\theta \neq \eta$.

Definition An incomplete-block design is *connected* if its treatment-concurrence graph is connected.