2.5 Parameters of strongly regular graphs

Let G be a strongly regular graph on n vertices. Put $a_1 = a$, $p_{11}^1 = p$ and $p_{11}^2 = q$, so that every vertex has valency a, every edge is contained in p triangles, and every non-edge is contained in q paths of length 2.

Counting the edges between $\mathcal{G}_1(\alpha)$ and $\mathcal{G}_2(\alpha)$ in two different ways shows that

$$a(a-p-1) = (n-a-1)q.$$
 (2.12)

Moreover,

$$A^2 = aI + pA + q(J - A - I),$$

so the eigenvalues of A on the strata other than W_0 are the roots of

$$x^{2} + (q-p)x - (a-q) = 0.$$
(2.13)

Theorem 2.19 If the two strata other than W_0 have the same dimension d then n = 4q + 1, a = d = 2q and p = q - 1.

Proof The sum of the roots of Equation (2.13) is equal to p - q, and the other eigenvalue is a, so

$$1 + 2d = n$$

and

$$a+d(p-q)=0.$$

So d = (n-1)/2 and d divides a. But $a \le n-2$, because G is not complete, so a = d = (n-1)/2. Then

1 + p - q = 0,

so p = q - 1. Substitution in Equation (2.12) gives

$$a(a-q) = (2a+1-a-1)q$$

and so a = 2q.

48

Theorem 2.20 If the two strata other than W_0 have different dimensions then $(q - p)^2 + 4(a - q)$ is a perfect square t^2 , and t divides (n - 1)(p - q) + 2a, and the quotient has the same parity as n - 1.

Proof Put $u = (q - p)^2 + 4(a - q)$. The roots of Equation (2.13) are

$$\frac{p-q\pm\sqrt{u}}{2}.$$

Let d_1 and d_2 be the corresponding dimensions. Then

$$a+d_1\left(\frac{p-q+\sqrt{u}}{2}\right)+d_2\left(\frac{p-q-\sqrt{u}}{2}\right)=0.$$

Since d_1 and d_2 are integers, if they are different then \sqrt{u} is rational. But u is an integer, so it must be a perfect square t^2 . Then

$$1 + d_1 + d_2 = n$$

and

$$2a + (d_1 + d_2)(p - q) + t(d_1 - d_2) = 0,$$

whose solutions are

$$d_1 = \frac{1}{2} \left[(n-1) - \frac{(n-1)(p-q) + 2a}{t} \right]$$

$$d_2 = \frac{1}{2} \left[(n-1) + \frac{(n-1)(p-q) + 2a}{t} \right]. \quad \blacksquare$$

Example 2.7 Let n = 11 and a = 4. Then Equation (2.12) gives

$$4(3-p) = 6q,$$

whose only solution in non-negative integers is p = 0, q = 2. Because 11 is not congruent to 1 modulo 4, Theorem 2.20 applies. But

$$(q-p)^2 + 4(a-q) = 2^2 + 4(4-2) = 12,$$

which is not a perfect square, so there is no strongly regular graph with valency 4 on 11 vertices.

Since interchanging edges and non-edges (taking the complement) of a strongly regular graph yields another strongly regular graph, we see immediately that there is no strongly regular graph with valency 6 on 11 vertices.

Note that authors who specialize in strongly regular graphs use n, k, λ and μ where I use n, a, p and q. My choice of notation here is not only for consistency. I can see no need to use two different alphabets for these four parameters. In this subject, k is already over-used, both as a member of the index set \mathcal{K} and as the block size (see Chapter ??). So is λ , which is not only a general scalar and a general eigenvalue, but which is firmly established as the notation for concurrence for Chapter ??. And μ is an occasional mate for λ , and more specifically the Möbius function in Chapter ??.

50