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2.4 Techniques

Given an association scheme in terms of its parameters of the first kind, we want
to find

• its strata;

• the dimensions of the strata;

• the matrixD expressing the stratum projectors as linear combinations of the
adjacency matrices;

• the minimum polynomial of each adjacency matrix;

• the eigenvalues of each adjacency matrix;

• the character table (the matrixC).

There are several techniques for doing this.

Definition A subspaceW of RΩ is invariant under a matrixM in RΩ×Ω if Mw∈
W for all w in W. It is invariant underA if it is invariant under every matrix inA .

Of course, the strata are invariant under every matrix in the Bose-Mesner alge-
bra, but they are not the only such subspaces, so our first technique needs a little
luck.

Technique 2.1 Use knowledge of or experience of or intuition about the sym-
metry of the association scheme to find “natural” invariant subspaces. By taking
intersections and complements, refine these to a set ofs+ 1 mutually orthogo-
nal subspaces, includingW0, whose sum isRΩ. Then verify that each of these
subspaces is a sub-eigenspace of each adjacency matrix.

This is the technique we adopted in Example 2.2. If it works it is a marvellous
technique, because it gives the most insight into the strata and their dimensions,
and it gives the character table (hence all of the eigenvalues) as part of the verifi-
cation. But this is cold comfort to someone without the insight to guess the strata.
The next technique is completely systematic and always works.

Technique 2.2 Choose one of the adjacency matricesAi and express its powers
in terms ofA0, . . . ,As, using the equations

AiA j = ∑
k

pk
i j Ak.
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Hence find the minimum polynomial ofAi , which has degree at mosts+ 1. Fac-
torize this minimum polynomial to obtain the eigenvalues ofAi . If you are lucky,
it hass+ 1 distinct eigenvaluesλ0, . . . , λs. Then the eigenspaces ofAi are the
strata and the projectors onto them areS0, . . . ,Ss where

Se =
∏
f 6=e

(Ai−λ f I)

∏
f 6=e

(λe−λ f )
.

Expressing these in terms ofA0, . . . ,As (we already have the powers ofAi in this
form) gives the entries inD.

Example 2.3 (Example 1.5 continued)In the cube association scheme, writeY =
Ayellow, B = Ablack andR= Ared. Then

YB= ∑
i

pi
yellow,blackAi = 2Y +3R.

This can be seen by reading off the values ofpi
yellow,black from Example 1.5.

Equivalently, start at a point on the cube, take one yellow step and then one black
one: where can you get to? The point at the end of the red edge from the starting
point can be reached in three ways along a yellow-black path, and each point at
the end of a yellow edge from the starting point can be reach in two ways along
such a path. Similarly,

Y2 = 3I +2B

and
YR= B.

So
Y3 = 3Y +2YB= 3Y +4Y +6R= 7Y +6R

and
Y4 = 7Y2 +6YR= 7Y2 +6B = 7Y2 +3(Y2−3I) = 10Y2−9I .

Thus
O = Y4−10Y2 +9I = (Y2−9I)(Y2− I),

so the minimum polynomial ofY is

(X−3I)(X +3I)(X− I)(X + I)

and the eigenvalues ofY are±3 and±1. (This verifies one eigenvalue we already
know: the valency of yellow, which is 3.)
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The eigenspaceW+1 of Y with eigenvalue+1 has projectorS+1 given by

S+1 =
(Y2−9I)(Y + I)
(12−9)(1+1)

=
(3I +2B−9I)(Y + I)

−16

=
(3I −B)(Y + I)

8
=

3I +3Y−B−YB
8

=
3I +Y−B−3R

8
.

The other three eigenprojectors are found similarly. The dimensions follow im-
mediately: for example

d+1 = dimW+1 = tr(S+1) = 3.

There are two small variations on Technique 2.2. The first is necessary if your
chosenAi has fewer thans+ 1 distinct eigenvalues. Then you need to find the
eigenprojectors for at least one more adjacency matrix, and take products of these
with those forAi . Continue until you haves+ 1 different non-zero projectors. A
good strategy is to choose a complicated adjacency matrix to start with, so that
it is likely to have many eigenvalues. That is why we usedY instead ofR in
Example 2.3.

The other variation is always possible, and saves some work. We know that
χΩ is always an eigenvector ofAi with eigenvalueai . So we can find the other
eigenvalues ofAi by working on the orthogonal complementW⊥0 of χΩ. We need
to find the polynomialp(Ai) of lowest degree such thatp(Ai)v= 0 for all v in W⊥0 .
Every power ofAi has the form∑ j µjA j . If v∈W⊥0 thenJv= 0 so(∑ j A j)v = 0,
so

s

∑
j=0

µjA jv =
s−1

∑
j=0

(µj −µs)A jv.

Thus for our calculations we can pretend thatJ = O and work with one fewer of
theA j .

Example 2.3 revisited If we putJ = O we getR=−(I +Y +B), so

Y3 = 7Y−6(I +Y +B) = Y−6I −3(Y2−3I)

so
Y3 +3Y2−Y−3I = O

so
(Y2− I)(Y +3I) = O.

Now, ayellow = 3 andY− 3I is not already a factor of this polynomial, so the
minimum polynomial is

(X−3I)(X2− I)(X +3I),

as before.
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Technique 2.3 If C and the dimensions are known, findD by using

D =
1
n

diag(d)C′diag(a)−1. (2.5)

If D is known, find the dimensions from the first column and then findC by using

C = ndiag(a)D′diag(d)−1. (2.6)

Technique 2.4 Use the orthogonality relations and/or the fact that the dimensions
must be integers to completeC or D from partial information. In particular

∑
i∈K

C(i,e) = 0 if e 6= 0; (2.7)

∑
e∈E

C(i,e)de = 0 if i 6= 0; (2.8)

∑
e∈E

D(e, i) = 0 if i 6= 0 (2.9)

and

∑
i∈K

D(e, i)ai = 0 if e 6= 0. (2.10)

Example 2.4 In the association scheme©5 defined by the 5-circuit, letA1 be the
adjacency matrix for edges. Then

A2
1 = 2I +(J−A1− I).

IgnoringJ, we haveA2
1 +A1− I = O, so we find that the eigenvalues ofA1 onW⊥0

are
−1±

√
5

2
.

Let the other two strata beW1 andW2, with dimensionsd1 and d2. Then the
incomplete character table is

W0 W1 W2

(1) (d1) (d2)

0 (1)

1 (2)

2 (2)


1 1 1

2
−1+

√
5

2
−1−

√
5

2

2


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(it is helpful to show the valencies and dimensions in parentheses like this). Then

∑
e

C(1,e)de = 2+

(
−1+

√
5

2

)
d1 +

(
−1−

√
5

2

)
d2 = 0.

To get rid of the
√

5, we must haved1 = d2. But ∑ede = 5, sod1 = d2 = 2.
The sums of the entries in the middle column and the final column must both

be 0, so the complete character table is as follows.

W0 W1 W2

(1) (2) (2)

0 (1)

1 (2)

2 (2)


1 1 1

2
−1+

√
5

2
−1−

√
5

2

2
−1−

√
5

2
−1+

√
5

2



There is alternative to Technique 2.2, which uses a remarkable algebra iso-
morphism.

Theorem 2.16 For k in K define the matrix Pk in RK×K by

Pk(i, j) = pi
jk = pi

k j

(so that Pk(i, j) is the number of k-coloured edges fromβ to C j(α) if β ∈ Ci(α)).
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�

�

�

�

�

�α β

Ci(α) C j(α)
Pk(i, j)
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���
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Let P =

{
∑
i∈K

λiPi : λ0, . . . , λs∈ R

}
. Defineϕ:A → P by ϕ(Ai) = Pi , extended

linearly. Thenϕ is an algebra isomorphism, called theBose-Mesner isomor-
phism.
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Proof The set of matrices{Pi : i ∈K } is linearly independent, becausePk(0, j) = 0
unlessj = k. Hence it is sufficient to prove thatϕ(AiA j) = ϕ(Ai)ϕ(A j).

Matrix multiplication is associative, so

(AiA j)Az = Ai(A jAz)

for i, j andz in K . But

(AiA j)Az = ∑
k∈K

pk
i j AkAz = ∑

k∈K
∑

x∈K
pk

i j p
x
kzAx

and

Ai(A jAz) = Ai

(
∑

y∈K
py

jzAy

)
= ∑

x∈K
∑

y∈K
px

iypy
jzAx.

The adjacency matrices are linearly independent, so

∑
k

pk
i j p

x
kz = ∑

y
px

iypy
jz (2.11)

for i, j, x andz in K .
Now

(PiPj)(x,z) = ∑
y

Pi(x,y)Pj(y,z)

= ∑
y

px
iypy

jz

= ∑
k

pk
i j p

x
kz

= ∑
k

pk
i j Pk(x,z)

soPiPj = ∑k pk
i j Pk and thusϕ(Ai)ϕ(A j) = ∑k pk

i j ϕ(Ak) = ϕ(∑k pk
i j Ak) = ϕ(AiA j).

Corollary 2.17 The matrices Ai and Pi have the same minimum polynomial and
hence the same eigenvalues.

Technique 2.5 Working in RK×K , find the eigenvalues and minimum polyno-
mial of Pi . These are the eigenvalues and minimum polynomial ofAi .

Example 2.5 (Example 1.4 continued)In the Petersen graph,

P1 =

 0 3 0
1 0 2
0 1 2

 .
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By inspection,

P1 +2I =

 2 3 0
1 2 2
0 1 4

 ,
which is singular, so−2 is an eigenvalue. We know that 3 is an eigenvalue, be-
causea1 = 3. The sum of the eigenvalues is equal to tr(P1), which is 2, so the
third eigenvalue is 1.

Let d1 andd2 be the dimensions of the strata corresponding to eigenvalues−2,
1 respectively. Then

∑
e

de = 1+d1 +d2 = 10

and

∑
e

C(1,e)de = 3−2d1 +d2 = 0,

sod1 = 4 andd2 = 5. Now the incomplete character table is

0 1 2
(1) (4) (5)

0 (1)
1 (3)
2 (6)

 1 1 1
3 −2 1
6


Apart from the 0-th column, the column sums must be zero, so

0 1 2
(1) (4) (5)

C =
0 (1)
1 (3)
2 (6)

 1 1 1
3 −2 1
6 1 −2

 .

Then

D =
1
10

 1 0 0
0 4 0
0 0 5

 1 3 6
1 −2 1
1 1 −2

 1 0 0
0 1

3 0
0 0 1

6



=
1
10



1 1 1

4 −8
3

2
3

5
5
3
−5

3


.
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Theorem 2.18 In the cyclic association scheme defined by the blueprint{∆i : i ∈K }
ofZn, the eigenvalues of Ai are

∑
α∈∆i

ηα

asη ranges over the complex nth roots of unity.

Proof Consider the complex vectorv = ∑β∈Ω ηβχβ, whereηn = 1. HereAi =
∑α∈∆i

Mα, so

Aiv = ∑
α∈∆i

Mα ∑
β∈Ω

ηβχβ

= ∑
α∈∆i

∑
β∈Ω

ηβMαχβ

= ∑
α∈∆i

ηα ∑
β∈Ω

ηβ−αχβ−α

= ∑
α∈∆i

ηαv.

Note that addition is modulon in both ηβ−α andχβ−α, so there is no problem
about inconsistency. Now,∆i =−∆i , so not only is

∑
α∈∆i

η−α = ∑
α∈∆i

ηα

but also this value is real. Ifη∈ {1,−1} thenv is real; otherwisev and its complex
conjugate ¯v have the same real eigenvalue sov+ v̄ and i(v− v̄) are distinct real
vectors with eigenvalue∑α∈∆i

ηα.

Technique 2.6 For a cyclic association scheme onZn, calculate the eigenvalues
∑α∈∆i

ηα, whereηn = 1, and amalgamate those spaces which have the same eigen-
value on every adjacency matrix.

Example 2.6 The 6-circuit gives the blueprint{0}, {±1}, {±2}, {3} of Z6. Then
A1 = M1 +M5, so the eigenvalues ofA1 are

θ + θ5 (twice)
θ2 + θ4 (twice)
θ3 + θ3 (once)
θ6 + θ6 (once),

whereθ is a primitive sixth root of unity inC. But θ6 = 1, θ3 =−1, θ2+θ4 =−1
(because the cube roots of unity sum to zero) andθ + θ5 = 1 (because the sixth
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roots of unity sum to zero). So a portion of the character table is

θ6 θ±1 θ±2 θ3

(1) (2) (2) (1)
0 (1)
±1 (2)
±2 (2)

3 (1)


1 1 1 1
2 1 −1 −2
2
2

 .

In this case the matrix is already square, so there is no amalgamation of columns.
If there are fewer thand(n+ 1)/2)e columns, complete the table and then amal-
gamate identical columns.

The techniques are summarized in Figure 2.1.
Note that many authors useP andQ for the matrices that I callC andnD.

Delsarte established this notation in his important work on the connection be-
tween association schemes and error-correcting codes, and it was popularized by
MacWilliams and Sloane’s book. However, I think thatP andQ are already over-
used in this subject. Quite apart from the use ofP for probability in connection
with random responses in designed experiments (see Chapter??), P andQ are
well established notation for projectors, andP is also the obvious letter for the
matrices in Theorem 2.16. Moreover, I findC andD more memorable, because
C contains thecharacters whileD contains thedimensions.
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Figure 2.1: Techniques for finding parameters of the second kind


