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2.4 Techniques

Given an association scheme in terms of its parameters of the first kind, we want
to find

e its strata;

the dimensions of the strata;

the matrixD expressing the stratum projectors as linear combinations of the
adjacency matrices;

the minimum polynomial of each adjacency matrix;

the eigenvalues of each adjacency matrix;
¢ the character table (the mati@.

There are several techniques for doing this.

Definition A subspac&V of R® is invariantunder a matrixM in R®*€ if Mw e
W for all win W. Itis invariant under? if it is invariant under every matrix ird.

Of course, the strata are invariant under every matrix in the Bose-Mesner alge-
bra, but they are not the only such subspaces, so our first technique needs a little
luck.

Technique 2.1 Use knowledge of or experience of or intuition about the sym-
metry of the association scheme to find “natural” invariant subspaces. By taking
intersections and complements, refine these to a set-df mutually orthogo-

nal subspaces, includingp, whose sum i®R?. Then verify that each of these
subspaces is a sub-eigenspace of each adjacency matrix.

This is the technique we adopted in Example 2.2. If it works it is a marvellous
technique, because it gives the most insight into the strata and their dimensions,
and it gives the character table (hence all of the eigenvalues) as part of the verifi-
cation. But this is cold comfort to someone without the insight to guess the strata.
The next technique is completely systematic and always works.

Technique 2.2 Choose one of the adjacency matriégsand express its powers
in terms ofAy, .. .,As, using the equations

AA;j = Z P Ax-
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Hence find the minimum polynomial &, which has degree at most- 1. Fac-
torize this minimum polynomial to obtain the eigenvalueg\ofif you are lucky,
it hass+ 1 distinct eigenvaluedy, ..., As. Then the eigenspaces Af are the
strata and the projectors onto them §ge. . ., Ss where

D(Ai—MU
D()\e—)\f)'

Expressing these in terms A§, . .., As (we already have the powers Afin this
form) gives the entries iD.

S=

Example 2.3 (Example 1.5 continued)in the cube association scheme, wiite-
Aveliows B = Aplack aNdR = Areq. Then

YB= Z pi/ellow,blackAi =2Y+3R
|

This can be seen by reading off the valuesplg)&low’black from Example 1.5.
Equivalently, start at a point on the cube, take one yellow step and then one black
one: where can you get to? The point at the end of the red edge from the starting
point can be reached in three ways along a yellow-black path, and each point at
the end of a yellow edge from the starting point can be reach in two ways along
such a path. Similarly,

Y2=31+2B
and
YR=B.
So
Y3 =3Y+2YB=3Y +4Y +6R= 7Y +6R
and
Y4 =7Y24+6YR=7Y2+6B=7Y2+3(Y2—3I) = 10v*—9.
Thus

O=Y*—10v24+9l = (Y2—9I)(Y2—1),
so the minimum polynomial of is
(X=3)(X+3)(X=1)(X+]I)

and the eigenvalues &fare+3 and=+1. (This verifies one eigenvalue we already
know: the valency of yellow, which is 3.)
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The eigenspacé/,; of Y with eigenvaluet+1 has projecto§, 1 given by

(Y2=9)(Y+1) (3 +2B-9)(Y+1)

ST g iyD) —16

(3 —B)(Y+1) 31+3Y—B-YB 3I+Y—B-3R
8 - 8 - 8 '

The other three eigenprojectors are found similarly. The dimensions follow im-
mediately: for example

dig=dimW, 1 =tr(Sy1) =3. =

There are two small variations on Technique 2.2. The first is necessary if your
chosenA; has fewer thars+ 1 distinct eigenvalues. Then you need to find the
eigenprojectors for at least one more adjacency matrix, and take products of these
with those forA;. Continue until you have+ 1 different non-zero projectors. A
good strategy is to choose a complicated adjacency matrix to start with, so that
it is likely to have many eigenvalues. That is why we udethstead ofR in
Example 2.3.

The other variation is always possible, and saves some work. We know that
Xq IS always an eigenvector @; with eigenvalues;. So we can find the other
eigenvalues of; by working on the orthogonal complemah- of Xo. We need
to find the polynomiap(A;) of lowest degree such thptA;)v =0 for all vin Wy".

Every power ofA; has the fornyy j jA;. If v e Wg- thenJv= 0 so(3jAj)v=0,

o)
S s—-1

Z}HJAW = Z)(uj —K)AjV.

i= =
Thus for our calculations we can pretend that O and work with one fewer of
theA;.
Example 2.3 revisited If we putJ = Owe getR= —(I +Y +B), so

Y3=7Y—6(1+Y+B)=Y -6l —3(Y?>—3I)

SO
Y343Y2_Y_31=0

SO
(Y2=1)(Y+3l)=0.

Now, ayellow = 3 andY — 3l is not already a factor of this polynomial, so the
minimum polynomial is

(X =3)(X2=1)(X+3l),

as before. =
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Technique 2.3 If C and the dimensions are known, fibdoy using
D= %diag(d)C’diag(a)‘l. (2.5)
If D is known, find the dimensions from the first column and then@nxy using
C = ndiag(a)D’ diag(d) 2. (2.6)

Technique 2.4 Use the orthogonality relations and/or the fact that the dimensions
must be integers to comple@zor D from partial information. In particular

z C(i,e)=0 if e£0; (2.7)
iex
Z C(i,e)de=0 ifi £0; (2.8)
ecEt
z D(ei)=0 ifi#£0 (2.9)
ecE
and
Z D(ei)ag =0 if e£0. (2.10)
ieX

Example 2.4 In the association scheni®) defined by the 5-circuit, le&; be the
adjacency matrix for edges. Then

A2 =21+ (J—A—1).

IgnoringJ, we haveA? + A; — | = O, so we find that the eigenvaluesAsf on\W;-
are
—1++/5
5

Let the other two strata b@&4 andW,, with dimensionsd; andd,. Then the
incomplete character table is

Wo Wy W,

o @ ()
o@ |1 1 1
12 |2 _1’;\/3 _1;\/3
2 (2) | 2
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(it is helpful to show the valencies and dimensions in parentheses like this). Then

ZCXL@dg:2+<_1+V@>dy+<_1;V@)d2:0.

2

To get rid of they/5, we must have; = d,. But Yele =15, s0d; =dy = 2.
The sums of the entries in the middle column and the final column must both
be 0, so the complete character table is as follows.

Wo Wy Wo

(1 (2) (2)
oW l1 1 1
12 |2 _1ZV% _1;V% -
2 2 |2 _1;V% _1;¢5_

There is alternative to Technique 2.2, which uses a remarkable algebra iso-
morphism.

Theorem 2.16 For k in X define the matrix Pin R**X py
R, ) = P = Pl

(so that R(i, j) is the number of k-coloured edges fr@to Cj(a) if B € G(a)).

Let? = z AiR iAo, ..., As€ R ;. Defined: 4 — P by ¢(A) = B, extended
ieX

linearly. Then¢ is an algebra isomorphism, called tl&ose-Mesner isomor-

phism
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Proof The setof matrice§R, :i € K} islinearly independent, becaudgo, j) =0

unlessj = k. Hence it is sufficient to prove th@t(AiA;) = d(A)d(A)).
Matrix multiplication is associative, SO

(AA)Az = Ai(AjAr)

fori, jandzin XK. But

(AADA = S PAA; = P PRA
ke K ke K xe KX
and
Ai(AjAZ) =A ( Z pﬁley> = Z Z pi)ilp)j/ZAX'
yex x€KyeX
The adjacency matrices are linearly independent, so

Z PPl = S PP, (2.12)
y

fori, j,xandzin X.
Now

(RP)(x2) = S R(XY)P;(y.2)

y
= > Py
y

SOPP; = 3 pjPkand thusp (A9 (A)) = 3k P O (Ak) = O (Sk P A) = O(AA]). =

Corollary 2.17 The matrices Aand R have the same minimum polynomial and
hence the same eigenvalues.

Technique 2.5 Working in RX*X find the eigenvalues and minimum polyno-
mial of B. These are the eigenvalues and minimum polynomiai of

Example 2.5 (Example 1.4 continued)in the Petersen graph,

0 30
Phb=|10 2].

012
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By inspection,
2 0
2

3
Pir2l=|1 2 ,
01 4

which is singular, so-2 is an eigenvalue. We know that 3 is an eigenvalue, be-
causea; = 3. The sum of the eigenvalues is equal td”ty, which is 2, so the

third eigenvalue is 1.
Letd; andd, be the dimensions of the strata corresponding to eigenvalBes

1 respectively. Then
e

and
zC(l, E)de =3-2d;+d>, =0,
e

sod; = 4 andds = 5. Now the incomplete character table is

o 1 2
1 4 (6)
o@mf[1 1 1
1 3| 3 -2 1
2 (6) | 6
Apart from the 0-th column, the column sums must be zero, so
o 1 2
(1) (4 (5
o (@M1 1 1
C = 13| 3-2 1
2 6| 6 1 -2
Then
1 (1 00 1 3 6 1 00
D = 510401 -2 1 030
005||1 1-2]|0oo0}
1 1 1]
8 2
N - T N
10 5 5
> 3 73




2.4. TECHNIQUES 45

Theorem 2.18 In the cyclic association scheme defined by the bluepfinti € K}
of Zn, the eigenvalues ofjAre
r]G
achy

asn ranges over the complex nth roots of unity.

Proof Consider the complex vector= yp.q anB, wheren" = 1. HereA =
Y aen Ma, SO

Av = Z Mg Z r]BXB

ael; BeQ

Note that addition is modula in both nf-¢@ andXg_q, SO there is no problem
about inconsistency. Now = —Aj, so not only is

n“=7%n"
achy achy
but also this value is real. if € {1, —1} thenvis real; otherwise& and its complex

conjugatev have the same real eigenvaluewse v andi(v— v) are distinct real
vectors with eigenvalug ., n®. =

Technique 2.6 For a cyclic association scheme @p, calculate the eigenvalues
> aea N%, wheren" = 1, and amalgamate those spaces which have the same eigen-
value on every adjacency matrix.

Example 2.6 The 6-circuit gives the bluepriq0}, {+1}, {2}, {3} of Zg. Then
A1 = M1+ Ms, so the eigenvalues &%, are

8 +6°  (twice)
02+0*  (twice)
92+06%  (once)
85+05  (once)

where8 is a primitive sixth root of unity irC. Bute®=1,8%= —1,8°+6%=—1
(because the cube roots of unity sum to zero) @rd8® = 1 (because the sixth
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roots of unity sum to zero). So a portion of the character table is

96 e:i:l ej:2 93

1 @ @ @
1 1 1 1

+ 2 1 -1 -2

+ 2

2

W NP O

In this case the matrix is already square, so there is no amalgamation of columns.
If there are fewer thaf(n+ 1)/2)] columns, complete the table and then amal-
gamate identical columns. m

The techniques are summarized in Figure 2.1.

Note that many authors ugeandQ for the matrices that | calC andnD.
Delsarte established this notation in his important work on the connection be-
tween association schemes and error-correcting codes, and it was popularized by
MacWilliams and Sloane’s book. However, | think tiaandQ are already over-
used in this subject. Quite apart from the usd>dbr probability in connection
with random responses in designed experiments (see CH2td? andQ are
well established notation for projectors, aRds also the obvious letter for the
matrices in Theorem 2.16. Moreover, | filtdandD more memorable, because
C contains theharacters whilé® contains thelimensions.
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find powers ofA; |

minimum polynomial ofA;

. — use the
Mo(X — ) factorize the m_|n|umum Bose-Mesner
polynomial : .
isomorphism
eigenvalues of
~ Me(A=Agl) . \ integer conditions and
S= —I_Ie()\e— ) \ row entries ofC / orthogonality relations
Ccharacter tabl€ dimensions)

/

C = ndiag(a)D’ diag(d) *

guess
strata

cyclic

g

D = n!diag(d)C'diagia)*

Strata

first column

( matrixD )

Figure 2.1: Techniques for finding parameters of the second kind



