Theorem 2.6 Let \mathcal{A} be the Bose-Mesner algebra of an association scheme on Ω with s associate classes and adjacency matrices A_0, A_1, \ldots, A_s . Then \mathbb{R}^{Ω} has s + 1mutually orthogonal subspaces W_0, W_1, \ldots, W_s , called strata, with orthogonal projectors S_0, S_1, \ldots, S_s such that

- (*i*) $\mathbb{R}^{\Omega} = W_0 \oplus W_1 \oplus \cdots \oplus W_s$;
- (ii) each of W_0, W_1, \ldots, W_s is a sub-eigenspace of every matrix in \mathcal{A} ;
- (iii) for i = 0, 1, ..., s, the adjacency matrix A_i is a linear combination of $S_0, S_1, ..., S_s$;
- (iv) for e = 0, 1, ..., s, the stratum projector S_e is a linear combination of A_0 , $A_1, ..., A_s$.

Proof The adjacency matrices A_1, \ldots, A_s commute and are symmetric, so s - 1 applications of Lemma 2.4, starting with the eigenspaces of A_1 , give spaces W_0 , \ldots, W_r as the non-zero intersections of the eigenspaces of A_1, \ldots, A_s , where r is as yet unknown. These spaces W_e are mutually orthogonal and satisfy (i). Since $A_0 = I$ and every matrix in \mathcal{A} is a linear combination of A_0, A_1, \ldots, A_s , the spaces W_e clearly satisfy (ii). Each S_e is a polynomial in A_1, \ldots, A_s , hence in \mathcal{A} , so (iv) is satisfied. Let C(i, e) be the eigenvalue of A_i on W_e . Then Equation (2.2) shows that

$$A_i = \sum_{e=0}^r C(i, e) S_e$$

and so (iii) is satisfied.

Finally, (iii) shows that S_0, \ldots, S_r span \mathcal{A} . Suppose that there are real scalars $\lambda_0, \ldots, \lambda_r$ such that $\sum_e \lambda_e S_e = O$. Then for $f = 0, \ldots, r$ we have $O = (\sum_e \lambda_e S_e) S_f = \lambda_f S_f$ so $\lambda_f = 0$. Hence S_0, \ldots, S_r are linearly independent, so they form a basis for \mathcal{A} . Thus $r + 1 = \dim \mathcal{A} = s + 1$ and r = s.

We now have two bases for \mathcal{A} : the adjacency matrices and the stratum projectors. The former are useful for addition, because $A_j(\alpha,\beta) = 0$ if $(\alpha,\beta) \in C_i$ and $i \neq j$. The stratum projectors make multiplication easy, because $S_e S_e = S_e$ and $S_e S_f = O$ if $e \neq f$.

Before calculating any eigenvalues, we note that if *A* is the adjacency matrix of any subset *C* of $\Omega \times \Omega$ then $A\chi_{\alpha} = \sum \{\chi_{\beta} : (\beta, \alpha) \in C\}$. In particular, $A_i\chi_{\alpha} = \chi_{C_i(\alpha)}$ and $J\chi_{\alpha} = \chi_{\Omega}$. Furthermore, if *M* is any matrix in $\mathbb{R}^{\Omega \times \Omega}$ then $M\chi_{\Omega} = \sum_{\omega \in \Omega} M\chi_{\omega}$. If *M* has constant row-sum *r* then $M\chi_{\Omega} = r\chi_{\Omega}$. **Example 2.2** Consider the group divisible association scheme GD(b,k) with *b* groups of size *k* and

 $A_1(\alpha,\beta) = \begin{cases} 1 & \text{if } \alpha \text{ and } \beta \text{ are in the same group but } \alpha \neq \beta \\ 0 & \text{otherwise} \end{cases}$ $A_2(\alpha,\beta) = \begin{cases} 1 & \text{if } \alpha \text{ and } \beta \text{ are in different groups} \\ 0 & \text{otherwise.} \end{cases}$

Consider the 1-dimensional space W_0 spanned by χ_{Ω} . We have

$$A_0 \chi_\Omega = I_\Omega \chi_\Omega = \chi_\Omega$$
$$A_1 \chi_\Omega = a_1 \chi_\Omega = (k-1) \chi_\Omega$$
$$A_2 \chi_\Omega = a_2 \chi_\Omega = (b-1) k \chi_\Omega$$

Thus W_0 is a sub-eigenspace of every adjacency matrix. This does not prove that W_0 is a stratum, because there might be other vectors which are also eigenvectors of the all the adjacency matrices with the same eigenvalues as W_0 .

Let α and β be in the same group Δ . Then

$$A_1 \chi_{\alpha} = \chi_{\Delta} - \chi_{\alpha} \qquad A_2 \chi_{\alpha} = \chi_{\Omega} - \chi_{\Delta}$$
$$A_1 \chi_{\beta} = \chi_{\Delta} - \chi_{\beta} \qquad A_2 \chi_{\beta} = \chi_{\Omega} - \chi_{\Delta}$$

so $A_1(\chi_{\alpha} - \chi_{\beta}) = -(\chi_{\alpha} - \chi_{\beta})$ and $A_2(\chi_{\alpha} - \chi_{\beta}) = 0$. Let W_{within} be the b(k-1)dimensional "within groups" subspace spanned by all vectors of the form $\chi_{\alpha} - \chi_{\beta}$ with α and β in the same group. Then W_{within} is a sub-eigenspace of A_0 , A_1 and A_2 and the eigenvalues for A_1 and A_2 are different from those for W_0 .

Since eigenspaces are mutually orthogonal, it is natural to look at the orthogonal complement of $W_0 + W_{\text{within}}$. This is the (b-1)-dimensional "between groups" subspace W_{between} spanned by vectors of the form $\chi_{\Delta} - \chi_{\Gamma}$ where Δ and Γ are different groups. Now

$$A_1 \chi_{\Delta} = A_1 \sum_{\alpha \in \Delta} \chi_{\alpha} = k \chi_{\Delta} - \sum_{\alpha \in \Delta} \chi_{\alpha} = (k-1) \chi_{\Delta}$$

and

$$A_2 \chi_\Delta = A_2 \sum_{\alpha \in \Delta} \chi_\alpha = k(\chi_\Omega - \chi_\Delta)$$

so $A_1(\chi_{\Delta} - \chi_{\Gamma}) = (k-1)(\chi_{\Delta} - \chi_{\Gamma})$ and $A_2(\chi_{\Delta} - \chi_{\Gamma}) = -k(\chi_{\Delta} - \chi_{\Gamma})$. Thus W_{between} is a sub-eigenspace with different eigenvalues from W_{within} . Therefore the strata are W_0 , W_{within} and W_{between} .

Lemma 2.7 If $P \in A$ and P is idempotent then $P = \sum_{e \in \mathcal{F}} S_e$ for some subset \mathcal{F} of $\{0, \ldots, s\}$.

Proof Let $P = \sum_{e=0}^{s} \lambda_e S_e$. Then $P^2 = \sum_{e=0}^{s} \lambda_e^2 S_e$, which is equal to *P* if and only if $\lambda_e \in \{0,1\}$ for e = 0, ..., s.

For this reason the stratum projectors are sometimes called *minimal idempotents* or *primitive idempotents*.

Lemma 2.8 The space W spanned by χ_{Ω} is always a stratum. Its projector is $|\Omega|^{-1} J_{\Omega}$.

Proof The orthogonal projector onto W is $|\Omega|^{-1} J_{\Omega}$ because

$$J_\Omega \chi_\Omega = \sum_{\omega \in \Omega} J_\Omega \chi_\omega = |\Omega| \, \chi_\Omega$$

and

$$J_{\Omega}(\boldsymbol{\chi}_{\boldsymbol{\alpha}}-\boldsymbol{\chi}_{\boldsymbol{\beta}})=0.$$

This is an idempotent contained in \mathcal{A} , so it is equal to $\sum_{e \in \mathcal{F}} S_e$, for some subset \mathcal{F} of $\{0, \ldots, s\}$, by Lemma 2.7. Then

$$1 = \dim W = \operatorname{tr}\left(|\Omega|^{-1}J_{\Omega}\right) = \sum_{e \in \mathcal{F}} \operatorname{tr} S_e = \sum_{e \in \mathcal{F}} \dim W_e$$

so we must have $|\mathcal{F}| = 1$ and W is itself a stratum.

Notation The 1-dimensional stratum spanned by χ_{Ω} is always called W_0 .

Although there are the same number of strata as associate classes, there is usually no natural bijection between them. When I want to emphasize this, I shall use a set \mathcal{K} to index the associate classes and a set \mathcal{E} to index the strata. However, there are some association schemes for which \mathcal{E} and \mathcal{K} are naturally the same but for which W_0 does not correspond to A_0 . So the reader should interpret these two subscripts '0' as different sorts of zero.

I shall always write d_e for dim W_e .

2.3 The character table

For *i* in \mathcal{K} and *e* in \mathcal{E} let C(i, e) be the eigenvalue of A_i on W_e and let D(e, i) be the coefficient of A_i in the expansion of S_e as a linear combination of the adjacency matrices. That is:

$$A_i = \sum_{e \in \mathcal{E}} C(i, e) S_e \tag{2.3}$$

$$S_e = \sum_{i \in \mathcal{K}} D(e, i) A_i.$$

(2.4)

Lemma 2.9 The matrices C in $\mathbb{R}^{\mathcal{K}\times\mathcal{E}}$ and D in $\mathbb{R}^{\mathcal{E}\times\mathcal{K}}$ are mutual inverses.

We note some special values of C(i, e) and D(e, i):

$$C(0,e) = 1 \qquad \text{because } A_0 = I = \sum_{e \in \mathcal{E}} S_e;$$

$$C(i,0) = a_i \qquad \text{because } A_i \chi_\Omega = a_i \chi_\Omega;$$

$$D(0,i) = \frac{1}{|\Omega|} \qquad \text{because } S_0 = \frac{1}{|\Omega|} J = \frac{1}{|\Omega|} \sum_{i \in \mathcal{K}} A_i;$$

$$D(e,0) = \frac{d_e}{|\Omega|} \qquad \text{because } d_e = \operatorname{tr}(S_e) = \sum_{i \in \mathcal{K}} D(e,i) \operatorname{tr}(A_i)$$

$$= |\Omega| D(e,0).$$

Lemma 2.10 *The map* $\varphi_e: \mathcal{A} \to \mathcal{A}$ *defined by*

$$\varphi_e: A_i \mapsto C(i, e)S_e$$

and extended linearly is an algebra homomorphism.

Corollary 2.11 The maps $\vartheta_0, \ldots, \vartheta_s \colon \mathcal{A} \to \mathbb{R}$ defined by

$$\vartheta_e: \sum_{i \in \mathcal{K}} \lambda_i A_i \mapsto \sum_{i \in \mathcal{K}} \lambda_i C(i, e)$$

are algebra homomorphisms.

Definition The maps $\vartheta_0, \ldots, \vartheta_s$ are *characters* of the association scheme. The matrix *C*, whose columns are the characters, is the *character table* of the association scheme.

Example 2.2 revisited The character table is

The entries in the 0-th row are are equal to 1; those in the 0-th column are the valencies.

34

and

Theorem 2.12 (Orthogonality relations for the associate classes)

$$\sum_{e \in \mathcal{E}} C(i, e) C(j, e) d_e = \begin{cases} a_i |\Omega| & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

Proof We calculate the trace of $A_i A_j$ in two different ways. First

$$A_{i}A_{j} = \left(\sum_{e} C(i,e)S_{e}\right) \left(\sum_{f} C(j,f)S_{f}\right)$$
$$= \sum_{e} C(i,e)C(j,e)S_{e}$$

so

$$\operatorname{tr}(A_i A_j) = \sum_{e} C(i, e) C(j, e) \operatorname{tr}(S_e)$$
$$= \sum_{e} C(i, e) C(j, e) d_e.$$

But $A_i A_j = \sum_k p_{ij}^k A_k$ so tr $(A_i A_j) = p_{ij}^0 |\Omega|$; and $p_{ij}^0 = 0$ if $i \neq j$, while $p_{ii}^0 = a_i$.

Corollary 2.13 If $|\Omega| = n$ then

$$D = \frac{1}{n} \operatorname{diag}(d) C' \operatorname{diag}(a)^{-1}.$$

Proof The equation in Theorem 2.12 can be written as

$$C \operatorname{diag}(d) C' = n \operatorname{diag}(a)$$

so

$$C \operatorname{diag}(d)C' \operatorname{diag}(a)^{-1} = nI.$$

But $D = C^{-1}$ so $D = n^{-1} \operatorname{diag}(d)C' \operatorname{diag}(a)^{-1}$.

Thus *C* is inverted by transposing it, multiplying the rows by the dimensions, dividing the columns by the valencies, and finally dividing all the entries by the size of Ω .

Example 2.2 revisited Here n = bk,

diag(a) =
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & k-1 & 0 \\ 0 & 0 & (b-1)k \end{bmatrix}$$

and

diag(d) =
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & b(k-1) & 0 \\ 0 & 0 & b-1 \end{bmatrix}$$

so

$$D = \frac{1}{bk} \begin{bmatrix} 1 & 0 & 0 \\ 0 & b(k-1) & 0 \\ 0 & 0 & b-1 \end{bmatrix} \begin{bmatrix} 1 & k-1 & (b-1)k \\ 1 & -1 & 0 \\ 1 & k-1 & -k \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{k-1} & 0 \\ 0 & 0 & \frac{1}{(b-1)k} \end{bmatrix}$$
$$= \frac{1}{bk} \begin{bmatrix} 1 & 1 & 1 \\ b(k-1) & -b & 0 \\ b-1 & b-1 & -1 \end{bmatrix}.$$

Note that the entries in the top row are all equal to 1/bk, while those in the first column are the dimensions divided by bk.

From D we can read off the stratum projectors as

$$S_0 = \frac{1}{bk}(A_0 + A_1 + A_2) = \frac{1}{bk}J,$$

$$S_{\text{within}} = \frac{1}{bk}(b(k-1)A_0 - bA_1) = I - \frac{1}{k}(A_0 + A_1) = I - \frac{1}{k}G,$$

where $G = A_0 + A_1$, which is the adjacency matrix for the relation "is in the same group as", and

$$\begin{split} S_{\text{between}} &= \frac{1}{bk} \left((b-1)(A_0 + A_1) - A_2 \right) \\ &= \frac{1}{bk} \left((b-1)G - (J-G) \right) = \frac{1}{k}G - \frac{1}{bk}J. \quad \blacksquare$$

Corollary 2.14 (Orthogonality relations for the characters)

$$\sum_{i \in \mathcal{K}} \frac{C(i, e)C(i, f)}{a_i} = \begin{cases} \frac{|\Omega|}{d_e} & \text{if } e = f \\ 0 & \text{otherwise.} \end{cases}$$

Proof Let $n = |\Omega|$. Now DC = I so

$$\frac{1}{n}\operatorname{diag}(d)C'\operatorname{diag}(a)^{-1}C = I$$

so

$$C'\operatorname{diag}(a)^{-1}C = n\operatorname{diag}(d)^{-1},$$

as required.

36

2.3. THE CHARACTER TABLE

Corollary 2.15 (Orthogonality relations for *D*)

(i)
$$\sum_{i \in \mathcal{K}} D(e,i)D(f,i)a_i = \begin{cases} \frac{d_e}{n} & \text{if } e = f \\ 0 & \text{otherwise;} \end{cases}$$

(ii)
$$\sum_{e \in \mathcal{E}} \frac{D(e,i)D(e,j)}{d_e} = \begin{cases} \frac{1}{na_i} & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

The entries in the matrices C and D are called *parameters of the second kind*.