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Theorem 2.6 Let 4 be the Bose-Mesner algebra of an association schente on
with s associate classes and adjacency matrige®\f . .., A. ThenR® has s+ 1
mutually orthogonal subspacespWV, ..., W, called strata with orthogonal
projectors §, S, ..., S such that

(i) RE=Wo W & - DW;

(i) each of W, W, ..., W is a sub-eigenspace of every matrixan

(i) fori =0,1,...,s, the adjacency matrix & a linear combination of § S,
N
(iv) fore=0, 1, ..., s, the stratum projectors$s a linear combination of &
A, .. A
Proof The adjacency matriceyy, ..., As commute and are symmetric, se- 1

applications of Lemma 2.4, starting with the eigenspaces; pfjive space¥\p,

..., W as the non-zero intersections of the eigenspacdg,af. ., As, wherer is

as yet unknown. These spad&is are mutually orthogonal and satisfy (i). Since
Ao = | and every matrix ird4 is a linear combination of, A, .. .,As, the spaces
W clearly satisfy (ii). Eacl®: is a polynomial inAg, ..., As, hence in4, so (iv) is
satisfied. LeC(i,e) be the eigenvalue o& onW,.. Then Equation (2.2) shows
that

r
A= C(l,G)S:)
2,
and so (iii) is satisfied.
Finally, (iii) shows thatS, ..., S spanA4. Suppose that there are real scalars
Ao, ..., Arsuchthaty (AeS=O. Thenforf =0, ...,r we haveD = (JAeSe) St =
AiS; soAs = 0. HenceS,, ..., S are linearly independent, so they form a basis

for 4. Thusr+1=dim4=s+1landr=s. =m

We now have two bases fct: the adjacency matrices and the stratum projec-
tors. The former are useful for addition, becadsén,) =0 if (a,B) € G and
I # j. The stratum projectors make multiplication easy, bec&Se= S and
SSi=0if e# 1.

Before calculating any eigenvalues, we note tha# i the adjacency matrix
of any subset of Q x Q thenAxq =Y {XB C(B,a) € C}. In particular,AiXq =
XG(a) @ndJXa = Xq. Furthermore, ifM is any matrix inR®*€ then Mxq =
Y weq MXw. If M has constant row-sumthenMygq = rxo.
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Example 2.2 Consider the group divisible association scheme(IGk) with b
groups of siz&k and

Ai(a,B) = { 1 if a andp are in the same group bat# 3
’ 0 otherwise
_[1 if aandp are in different groups
Ao(a =
2(0,P) {0 otherwise.

Consider the 1-dimensional spadg spanned byo. We have

AoXao = loXa = X
Aixo =a1Xo = (K—=1)Xa
AoXaq = aXo = (b—1)kxq.

ThusWp is a sub-eigenspace of every adjacency matrix. This does not prove that
Wp is a stratum, because there might be other vectors which are also eigenvectors
of the all the adjacency matrices with the same eigenvalués.as

Leta andf3 be in the same groufp. Then

ArXa = Xa— Xa A2Xa = Xa — Xa
A1Xp = Xa — Xp A2Xp =Xa —Xa

SOA1(Xa — Xg) = —(Xa — Xg) andAz(Xa — Xg) = 0. LetWithin be theb(k —1)-
dimensional “within groups” subspace spanned by all vectors of the farmyg
with a andf3 in the same group. TheéW,inin IS a sub-eigenspace 8¢, A; and
A, and the eigenvalues féy, andA; are different from those foib.

Since eigenspaces are mutually orthogonal, it is natural to look at the orthogo-
nal complement of\p +Wiyithin- This is the(b— 1)-dimensional “between groups”
subspac®\beweenspanned by vectors of the forga — xr whereA andl™ are dif-
ferent groups. Now

AXa=A1 ) Xa=Kka— ) Xa=(k=1)Xa
aeA aelA
and
AoXa =A2 ) Xa =K(Xa—Xa)

aelh

S0A1(Xa—Xr) = (k—=1)(Xa—Xr) andAz(Xa —Xr) = —K(Xa —Xr ). Thus\Whetween
is a sub-eigenspace with different eigenvalues figinin. Therefore the strata

areWo, Wiithin andWhetween ™
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Lemma 2.7 If P € 4 and P is idempotent thenP ¥ .. S for some subsef of

{0,...,s}.

Proof LetP =753 jAeS. ThenP? = 53 ,AZS, which is equal tdP if and only
if Ae€ {0,1} fore=0,...,5 =

For this reason the stratum projectors are sometimes aalileithal idempo-
tentsor primitive idempotents

Lemma 2.8 The space W spanned Ry is always a stratum. Its projector is
Q1.

Proof The orthogonal projector onid' is |Q|*1JQ because

Joxa = ) JaXo=Q[Xa

weQ

and
Jo(Xa —Xpg) = 0.

This is an idempotent contained.ff so it is equal tdy o 4 S, for some subsef
of {0,...,s}, by Lemma 2.7. Then

1= dimW:tr(|Q|_1JQ> =5 rS=Y dim\e
ecF ecF

so we must havefF | = 1 andW is itself a stratum. =

Notation The 1-dimensional stratum spannedyayis always called\p.

Although there are the same number of strata as associate classes, there is
usually no natural bijection between them. When | want to emphasize this, | shall
use a sefX to index the associate classes and a5gt index the strata. However,
there are some association schemes for wiii@nd K are naturally the same but
for whichWp does not correspond #y. So the reader should interpret these two
subscripts ‘0’ as different sorts of zero.

| shall always writede for dimWe.

2.3 The character table

Foriin K andein ‘£ letC(i, e) be the eigenvalue & onW; and letD(e,i) be the
coefficient ofA; in the expansion o0& as a linear combination of the adjacency
matrices. That is:

A=Y Clio% (23)
ecE
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and
S= z D(ei)A. (2.4)
icK
Lemma 2.9 The matrices C iRX*% and D inRZ*X are mutual inverses.

We note some special values@fi,e) andD(e,i):

C(0,e) =1 becausdo=1= 5 S
ecE
C(i,0)=4q MEmwémQZaxm
1
D(0,i) = — becaus&y = =
00) =g zg(
de
D(e0) = — because. = tr(S D(e,i)tr(A;
|Q|D(e,0).

Lemma 2.10 The mapbe: 4 — A4 defined by

be: A — C(i,0)S
and extended linearly is an algebra homomorphism.
Corollary 2.11 The mapsy, ...,9s. 4 — R defined by

ZAA"_) Z)\CI e)
ek ieX

are algebra homomorphisms.

Definition The mapSdy, ..., ds arecharactersof the association scheme. The
matrixC, whose columns are the characters, isdh&racter tableof the associa-
tion scheme.

Example 2.2 revisited The character table is

0 within between

0 1 1 1
1| k-1 -1 k-1
(b—1)k O Kk

The entries in the 0-th row are are equal to 1; those in the 0-th column are the
valencies. =
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Theorem 2.12 (Orthogonality relations for the associate classes)

: . a|Qf ifi=]
z C(l,E)C(J,e)de = .
& 0 otherwise.

Proof We calculate the trace @A in two different ways. First

A — (ZC“@%)<ZC“fﬁ0

= YCi.eC(j.0%
SO

tr(AA) = 3 C(i,e)C(j,e)tr(S)

e

= ZC(i,e)C(j,e)de.

g
BUt AAj = 3 P Ak so t{AA}) = pf |Qf; andpd = 0iif i # j, while p} —=a. =
Corollary 2.13 If |Q| =n then
D= %diag(d)C’diag(a)l.
Proof The equation in Theorem 2.12 can be written as
Cdiag(d)C’' = ndiag(a)

SO
Cdiag(d)C' diagia)~* = nl.

ButD =C!soD =n"!diagd)C'diaga)™t. =

ThusC is inverted by transposing it, multiplying the rows by the dimensions,
dividing the columns by the valencies, and finally dividing all the entries by the
size ofQ.
Example 2.2 revisited Heren = bk,

1 O 0
diaga)=| 0 k—1 0
0 0 (b-121k
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and
1 0 0
diagd)=| 0 bk—1) 0
A
SO
11 0 0 [1 k—1 (b—1)k 1 0 0
Dkab(kl)O]11 o”okl1 o]
|0 0 b-1]|1k-1 -k 0 0 @ax
[ 1 1 17
= x| Pk=1) -b 0 |.
| b-1 b-1 -1

Note that the entries in the top row are all equal foK while those in the first
column are the dimensions divided bl
FromD we can read off the stratum projectors as

1 1
S= b—k(Ao+A1+A2) = b_kJ’

1 1 1
Swithin = E((b(k— 1)Ag—DbA) =1 — E(A0.|_A1) - EG’
whereG = Ap + A1, which is the adjacency matrix for the relation “is in the same

group as”, and

Soetween = i ((b_ 1) (AO+A1) - AZ)

bk
1 1 1
= H(((b—l)G—(J—G)) = EG_ﬁ(J' u

Corollary 2.14 (Orthogonality relations for the characters)

o QL
C(i,e)C(i, f) g ife=f
e e

i£% &

0 otherwise.

Proof Letn=|Q|. NowDC =1 so

%diag(d)C’diag(a)‘lc =1

SO
C'diag(@)~*C = ndiag(d) 1,

as required. =
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Corollary 2.15 (Orthogonality relations for D)

e ife=f
0] ZD(e,i)D(f,i)ai{ n -

i€eX 0 otherwise:

iy

ecE

(A
D<e,i>D<e,j>_{ na =]
de

0 otherwise.

The entries in the matricésandD are calledobarameters of the second kind



