
Chapter 2

The Bose-Mesner Algebra

2.1 Orthogonality

This section gives a brief coverage of those aspects of orthogonality that are nec-
essary to appreciate the Bose-Mesner algebra. I hope that most readers have seen
most of this material before, even if in a rather different form.

There is a natural inner product〈 , 〉 onRΩ defined by

〈 f ,g〉= ∑
ω∈Ω

f (ω)g(ω) for f andg in RΩ.

Vectors f andg areorthogonalto each other (writtenf ⊥ g) if 〈 f ,g〉 = 0. If U
andW are subspaces ofRΩ with 〈u,w〉= 0 for all u in U and allw in W, we say
thatU is orthogonal toW (writtenU ⊥W.)

If W is a subspace ofRΩ, theorthogonal complementof W is defined by

W⊥ =
{

v∈ RΩ : 〈v,w〉= 0 for all w in W
}
.

Here are some standard facts about orthogonal complements.

• W⊥ is a subspace ofRΩ;

• dimW⊥+dimW = dimRΩ = |Ω|;

•
(
W⊥
)⊥ = W (recall that we are assuming that|Ω| is finite);

• (U +W)⊥ = U⊥ ∩W⊥ (recall thatU +W = {u+w : u∈U andw∈W},
which is called thevector space sumof U andW);

• (U ∩W)⊥ = U⊥+W⊥;
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26 CHAPTER 2. THE BOSE-MESNER ALGEBRA

• RΩ =W⊕W⊥, which is called thedirect sumof W andW⊥: this means that
if v∈ RΩ then there are unique vectorsw∈W andu∈W⊥ with v = w+u.

The last fact enables us to make the following definition.

Definition The mapP:RΩ→ RΩ defined by

Pv∈W and v−Pv∈W⊥

is called theorthogonal projectorontoW.

To show thatP is the orthogonal projector ontoW it is enough to show that
Pv= v for v in W andPv= 0 for v in W⊥.

The orthogonal projectorP is a linear transformation. We shall identify it with
the matrix that represents it with respect to the basis{χω : ω ∈Ω}. The phrase
‘orthogonal projector’ will frequently be abbreviated to ‘projector’.

Lemma 2.1 Let W and U be subspaces ofRΩ with orthogonal projectors P and
Q respectively. Then

(i) P2 = P (that is, P isidempotent);

(ii) 〈Pχα,χβ〉= 〈χα,Pχβ〉 and hence P is symmetric;

(iii) dimW = tr(P);

(iv) if U = W⊥ then Q= IΩ−P;

(v) if U ⊥W then PQ= QP= OΩ.

Commuting projectors have an importance beyond spaces that are actually
orthogonal to each other.

Definition LetW andU be subspaces ofRΩ with orthogonal projectorsP andQ
respectively. ThenW andU aregeometrically orthogonalto each other ifPQ=
QP.

Lemma 2.2 If W and U are geometrically orthogonal then

(i) PQ is the orthogonal projector onto W∩U;

(ii)
(
W∩ (W∩U)⊥

)
⊥U.
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Proof (i) We need to prove thatPQ is the identity onW∩U and maps ev-
erything in(W∩U)⊥ to the zero vector. Ifv∈W∩U thenPQv= Pv= v.
If v∈ (W∩U)⊥ = W⊥+U⊥ thenv = x+ y with x in W⊥ andy in U⊥ so
PQv= PQx+PQy= QPx+PQy= 0 becausePx= Qy= 0. (This ‘0’ is the
zero vector inRΩ.)

(ii) If v∈W∩ (W∩U)⊥ thenPv= v andPQv= 0 soQv= QPv= PQv= 0 so
v∈U⊥.

Property (ii) gives some clue to the strange name ‘geometric orthogonality’.
The spaceW∩ (W∩U)⊥ is the orthogonal complement ofW∩U insideW, and
U ∩ (W∩U)⊥ is the orthogonal complement ofW∩U insideU . So geometric
orthogonality means that these two complements are orthogonal to each other as
well as toW∩U : (

W∩ (W∩U)⊥
)
⊥
(
U ∩ (W∩U)⊥

)
.

Thus subspacesW andU are geometrically orthogonal if they are as orthogonal
as they can be given that they have a non-zero intersection.

Example 2.1 In R3, letW be thexy-plane and letU be thexz-plane. ThenW∩U
is thex-axis;W∩ (W∩U)⊥ is they-axis; andU ∩ (W∩U)⊥ is thez-axis. So the
xy-plane is geometrically orthogonal to thexz-plane.

On the other hand, thex-axis is not geometrically orthogonal to the plane
x = y.

Lemma 2.3 Let W1, . . . , Wr be subspaces ofRΩ with orthogonal projectors P1,
. . . , Pr which satisfy

(i)
r

∑
i=1

Pi = IΩ;

(ii) PiPj = OΩ if i 6= j.

ThenRΩ is the direct sum W1⊕W2⊕·· ·⊕Wr .

Proof We need to show that every vectorv in RΩ has a unique expression as a
sum of vectors in theWi . Let vi = Piv. Then

v = Iv =
(
∑Pi

)
v = ∑(Piv) = ∑vi

with vi in Wi , soRΩ = W1 +W2 + · · ·+Wr .
For uniqueness, suppose thatv = ∑wi with wi in Wi . Then

v j = Pjv = Pj

(
∑
i

wi

)
= Pj

(
∑
i

Piwi

)
=

(
∑
i

PjPiwi

)
= PjPjw j = w j .
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2.2 The algebra

Given an association scheme onΩ with sassociate classes and adjacency matrices
A0, A1, . . . ,As, let

A =

{
s

∑
i=0

λiAi : λ0, . . . , λs∈ R

}
.

It is clear that the adjacency matrices are linearly independent, for if(α,β) ∈ C j

then (
∑
i

λiAi

)
(α,β) = λ j .

ThereforeA has dimensions+ 1 as a vector space overR. It is closed under
multiplication, because of Equation (1.1), so it is an algebra. It is called theBose-
Mesner algebra.

If M ∈ A thenM is symmetric, because every adjacency matrix is symmetric.
By a standard result of linear algebra,M is diagonalizable overR. This means that
it has distinct real eigenvaluesλ1, . . . ,λr (say, because we do not know the value
of r) with eigenspacesW1, . . . , Wr (this means thatWj =

{
v∈ RΩ : Mv = λ jv

}
)

such that

• RΩ = W1⊕W2⊕·· ·⊕Wr ;

• the minimum polynomial ofM is ∏r
j=1(X−λ j), with no repeated factors.

In fact, not only isM diagonalizable but alsoWi ⊥Wj if i 6= j.
The orthogonal projectorPi ontoWi is given by

Pi =
∏
j 6=i

(M−λ j I)

∏
j 6=i

(λi−λ j)
, (2.1)

for if v∈Wi then (
∏
j 6=i

(M−λ j I)

)
v =

(
∏
j 6=i

(λi−λ j)

)
v

but if v∈Wk with k 6= i then(
∏
j 6=i

(M−λ j I)

)
v = 0.
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BecauseA is an algebra containingI , A contains all non-negative powers ofM,
soA contains the projectorsP1, . . . ,Pr .

Note also that

M =
r

∑
i=1

λiPi . (2.2)

If none of the eigenvalues is zero thenM is invertible and

M−1 =
r

∑
i=1

1
λi

Pi ,

which is also inA .
We need to consider something more general than an inverse. Suppose that

f is any function from any setS to any setT. Then a functiong:T → S is called
a generalized inverseof f if f g f = f andg f g= g. It is evident that set functions
always have generalized inverses: ify∈ Im( f ) then letg(y) be any elementx of S
with f (x) = y; if y /∈ Im( f ) theng(y) may be any element ofS. If f is invertible
theng = f−1; otherwise there are several possibilities forg. However, when there
is more structure then generalized inverses may not exist. Group homomorphisms
do not always have generalized inverses; nor do continuous functions in topology.
However, linear transformationsdohave generalized inverses.

If M is diagonalizable then one of its generalized inverses has a special form. It
is called theDrazin inverse orMoore-Penrosegeneralized inverse and writtenM−.
This given by

M− =
r

∑
i=1

λi 6=0

1
λi

Pi .

If M ∈ A thenM− ∈ A .
That concludes the properties of a single element ofA . The key fact for deal-

ing with two or more matrices inA is thatA is commutative; that is, if M ∈ A
andN ∈ A thenMN = NM. This follows from Lemma 1.2. The following rather
technical lemma is the building block for the main result.

Lemma 2.4 Let U1, . . . , Um be non-zero orthogonal subspaces ofRΩ such that
R

Ω = U1⊕·· ·⊕Um. For 16 i 6 m, let Qi be the orthogonal projector onto Ui .
Let M be a symmetric matrix which commutes with Qi for 16 i 6 m. Let the
eigenspaces of M be V1, . . . , Vr . Let the non-zero subspaces among the intersec-
tions Ui ∩Vj be W1, . . . , Wt . Then

(i) RΩ = W1⊕·· ·⊕Wt ;

(ii) if k 6= l then Wk ⊥Wl ;
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(iii) for 16 k6 t, the space Wk is contained in an eigenspace of M;

(iv) for 16 k6 t, the orthogonal projector onto Wk is a polynomial in Q1, . . . ,
Qm and M.

Proof Part (iii) is immediate from the definition of theWk. So is part (ii), because
Ui1 ⊥Ui2 if i1 6= i2 andVj1 ⊥Vj2 if j1 6= j2 so the two spacesUi1∩Vj1 andUi2∩Vj2
are either orthogonal or equal.

For 16 j 6 r, let Pj be the projector ontoVj . SincePj is a polynomial inM,
it commutes withQi , soUi is geometrically orthogonal toVj . By Lemma 2.2, the
orthogonal projector ontoUi∩Vj is QiPj , which is a polynomial inQi andM. This
proves (iv).

Finally, QiPj = O precisely whenUi ∩Pj = {0}, so the sum of the orthogonal
projectors onto the spacesWk is the sum of the non-zero productsQiPj , which is
equal to the sum of all the productsQiPj . But

∑
i

∑
j

QiPj =

(
∑
i

Qi

)(
∑

j
Pj

)
= I2 = I ,

so Lemma 2.3 shows thatRΩ = W1⊕·· ·⊕Wt , proving (i).

Corollary 2.5 If M and N are commuting symmetric matrices inRΩ×Ω thenRΩ

is the direct sum of the non-zero intersections of the eigenspaces of M and N.
Moreover, these spaces are mutually orthogonal and their orthogonal projectors
are polynomials in M and N.

Proof Apply Lemma 2.4 toM and the eigenspaces ofN.

If W is contained in an eigenspace of a matrixM, I shall call it asub-eigenspace
of M.


