Chapter 2

The Bose-Mesner Algebra

2.1 Orthogonality

This section gives a brief coverage of those aspects of orthogonality that are nec-
essary to appreciate the Bose-Mesner algebra. | hope that most readers have seen
most of this material before, even if in a rather different form.

There is a natural inner produgt, ) onR? defined by

(f,g) = Z}f(w}g(w) for f andgin R2.

Vectors f andg areorthogonalto each other (writterf L g) if (f,g) =0. If U
andW are subspaces & with (u,w) = 0 for alluin U and allw in W, we say
thatU is orthogonal taV (writtenU L W.)

If W is a subspace &%, theorthogonal complemerf W is defined by

Wt = {VGRQ - (VW) :OforallwinW}.
Here are some standard facts about orthogonal complements.
e W' is a subspace &%;
o dimW, +dimwW = dimR® = |Q|;
. (WL)L =W (recall that we are assuming tH&Y| is finite);

e (U+W)t =UrnW (recall thatU + W = {u+w:ucU andw € W},
which is called thevector space surof U andW);

o (UnW)t=Ut+W;
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e R =WaW-, which is called thelirect sumof W andW-: this means that
if ve R? then there are unique vectarse W andu € W with v =w+ u.

The last fact enables us to make the following definition.
Definition The mapP:R? — R? defined by
PveW and v—PveW-s

is called theorthogonal projectorontoW.

To show thatP is the orthogonal projector on¥ it is enough to show that
Pv=vforvinW andPv= 0 forvin W+,

The orthogonal projectd? is a linear transformation. We shall identify it with
the matrix that represents it with respect to the bagis: we Q}. The phrase
‘orthogonal projector’ will frequently be abbreviated to ‘projector’.

Lemma 2.1 Let W and U be subspaces®® with orthogonal projectors P and
Q respectively. Then

(i) P2=P (thatis, P isdempoten,

(i) (PXa,Xp) = (Xa;PXg) and hence P is symmetric;
(i) dimW =tr(P);
(iv) ifU =W then Q=1g —P;

(v) ifU LW then PQ= QP = Oq.

Commuting projectors have an importance beyond spaces that are actually
orthogonal to each other.

Definition LetW andU be subspaces & with orthogonal projector® andQ
respectively. TheiV andU aregeometrically orthogonaio each other iPQ =

QP.
Lemma 2.2 If W and U are geometrically orthogonal then

(i) PQ is the orthogonal projector onto WU

(ii) (Wﬂ(WﬂU)L> 1U.
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Proof (i) We need to prove tha®Q is the identity onw NU and maps ev-
erything in(WNU)™ to the zero vector. I e WNU thenPQv= Pv=v.
If ve (WNU)* =W+ +U"L thenv = x+y with x in W+ andy in U+ so
PQv=PQx+ PQy= QPx+4 PQy= 0 becaus®x= Qy=0. (This ‘0’ is the
zero vector ifR2.)

(i) If ve WN(WNU)* thenPv=vandPQv= 0 soQv= QPv=PQv=0so
veUL. =

Property (ii) gives some clue to the strange name ‘geometric orthogonality’.
The spac&V N (WNU)™" is the orthogonal complement W NU insideW, and
un (WﬂU)L Is the orthogonal complement 8 NU insideU. So geometric

orthogonality means that these two complements are orthogonal to each other as

well as toWwNuU:
(Wm(WmU)i) 1 (u ﬂ(WﬂU)L).

Thus subspaces/ andU are geometrically orthogonal if they are as orthogonal
as they can be given that they have a non-zero intersection.

Example 2.1 In R3, letW be thexy-plane and let be thexzplane. Theiw NU
is thex-axis;W N (WNU)™* is they-axis; andJ N (WNU)* is thez-axis. So the
xy-plane is geometrically orthogonal to tkeplane.

On the other hand, the-axis is not geometrically orthogonal to the plane
X=Y. =

Lemma 2.3 Let W, ..., W be subspaces @&® with orthogonal projectors P
..., B which satisfy

r
(i) Y R=lg;
2,
(iiy PiPj=Ogq ifi # .
ThenR? is the direct sum WoaWs & - - - W,

Proof We need to show that every vectoin R® has a unique expression as a
sum of vectors in thg\. Letv; = Bv. Then

v=Ilv= (ZP,)V: Z(P.v) = Zvi

with v; in W, SOR® =Wy +Wo 4 --- +W,.
For unigueness, suppose that S w; with w; in W. Then

vj=Pv=P, (Zwi> —P (.Z P.wi> = (IZ PjP,Wi) —PPwj=w,. =
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2.2 The algebra

Given an association scheme@Qrwith sassociate classes and adjacency matrices

Ao, A, ..., A, let
s
A= ANA Ao, ..., AsER .

It is clear that the adjacency matrices are linearly independent, far, ) € C;

then
(zm—) (a,B) =A;j.

Therefore4 has dimensiors+ 1 as a vector space ov&. It is closed under
multiplication, because of Equation (1.1), so itis an algebra. It is calleBdse-
Mesner algebra

If M € 4 thenM is symmetric, because every adjacency matrix is symmetric.
By a standard result of linear algebh s diagonalizable oveR. This means that
it has distinct real eigenvaluds, ..., A, (say, because we do not know the value
of r) with eigenspace®y, ..., W (this means thalV; = {ve R?: Mv = )\jV})
such that

e RE=W oW @ BW;
e the minimum polynomial oM is [1j_,(X —Aj), with no repeated factors.

In fact, not only isM diagonalizable but alséf L W if i # j.
The orthogonal projectd? ontoW is given by

|;|('V|—7\j|)

_ 17

e oA ey
|

for if ve W then

(LII(M_AJ.))VZ (g@i_xjgv

but if v € W with k # i then

<|‘|(M—Aj|)) v=0.

J1#
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Becauseq is an algebra containing A4 contains all non-negative powers df,
sS04 contains the projectofg, ...,F.
Note also that

M = Zmp.. (2.2)

If none of the eigenvalues is zero thighis invertible and

r
1
M1=FY =R
i;)\i ’
which is also in4.

We need to consider something more general than an inverse. Suppose that
f is any function from any seé$to any sefl. Then a functiorg: T — Sis called
ageneralized inversef f if fgf = f andgfg= g. It is evident that set functions
always have generalized inversesy # Im(f) then letg(y) be any element of S
with f(x) =y; if y ¢ Im(f) theng(y) may be any element @& If f is invertible
theng = f~1; otherwise there are several possibilitiesgoHowever, when there
is more structure then generalized inverses may not exist. Group homomorphisms
do not always have generalized inverses; nor do continuous functions in topology.
However, linear transformatior® have generalized inverses.

If M is diagonalizable then one of its generalized inverses has a special form. It
is called theDrazininverse oMMoore-Penrosgeneralized inverse and writtéf.
This given by

If M e 4thenM™ € 4.

That concludes the properties of a single elemeni.of he key fact for deal-
ing with two or more matrices itfl is that 4 is commutativethat is, ifM € 4
andN € A4 thenMN = NM. This follows from Lemma 1.2. The following rather
technical lemma is the building block for the main result.

Lemma 2.4 Let Uy, ..., Uy, be non-zero orthogonal subspaceisS? such that
R2=U;® --®Uny. For1<i<m,letQ be the orthogonal projector onto;U

Let M be a symmetric matrix which commutes withf@ 1 <i < m. Let the
eigenspaces of M be V..., . Let the non-zero subspaces among the intersec-
tionsUnVjbeW,...,W. Then

() RE=Wi - OW;

(i) ifk # 1 then W, L W;
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(i) for 1 <k <t, the space Wis contained in an eigenspace of M;

(iv) for 1 < k <t, the orthogonal projector onto Ws a polynomial in Q, ...,
Qmand M.

Proof Part (iii) is immediate from the definition of th,. So is part (ii), because
Ui, LU, if iy #izandVj, LV, if j1 # J2 so the two spacdd;, NVj, andU;, NV,
are either orthogonal or equal.

For 1< j <r, let Pj be the projector ont¥j. SinceP; is a polynomial inM,
it commutes withQ;, soU; is geometrically orthogonal tg;. By Lemma 2.2, the
orthogonal projector ontd; NV; is Q;Pj, which is a polynomial irQ; andM. This
proves (iv).

Finally, Q;P; = O precisely wherJ; N P; = {0}, so the sum of the orthogonal
projectors onto the spac® is the sum of the non-zero produd@sP;, which is
equal to the sum of all the produc@sP;. But

> D QP = <2Qi) (2'31') =12=1,
] [ J
so Lemma 2.3 shows thR®? =W, @ --- & W, proving (i). m

Corollary 2.5 1f M and N are commuting symmetric matricesfift*® thenR®

is the direct sum of the non-zero intersections of the eigenspaces of M and N.
Moreover, these spaces are mutually orthogonal and their orthogonal projectors
are polynomials in M and N.

Proof Apply Lemma 2.4 tdM and the eigenspacesNf =

If W is contained in an eigenspace of a maltlixl shall call it asub-eigenspace
of M.



