Chapter 2

The Bose-Mesner Algebra

2.1 Orthogonality

This section gives a brief coverage of those aspects of orthogonality that are necessary to appreciate the Bose-Mesner algebra. I hope that most readers have seen most of this material before, even if in a rather different form.

There is a natural inner product \langle , \rangle on \mathbb{R}^{Ω} defined by

$$\langle f,g \rangle = \sum_{\omega \in \Omega} f(\omega)g(\omega) \quad \text{for } f \text{ and } g \text{ in } \mathbb{R}^{\Omega}.$$

Vectors f and g are *orthogonal* to each other (written $f \perp g$) if $\langle f, g \rangle = 0$. If U and W are subspaces of \mathbb{R}^{Ω} with $\langle u, w \rangle = 0$ for all u in U and all w in W, we say that U is orthogonal to W (written $U \perp W$.)

If *W* is a subspace of \mathbb{R}^{Ω} , the *orthogonal complement* of *W* is defined by

$$W^{\perp} = \left\{ v \in \mathbb{R}^{\Omega} : \langle v, w \rangle = 0 \text{ for all } w \text{ in } W \right\}.$$

Here are some standard facts about orthogonal complements.

- W^{\perp} is a subspace of \mathbb{R}^{Ω} ;
- dim W^{\perp} + dim W = dim $\mathbb{R}^{\Omega} = |\Omega|$;
- $(W^{\perp})^{\perp} = W$ (recall that we are assuming that $|\Omega|$ is finite);
- $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$ (recall that $U+W = \{u+w : u \in U \text{ and } w \in W\}$, which is called the *vector space sum* of U and W);
- $(U \cap W)^{\perp} = U^{\perp} + W^{\perp};$

• $\mathbb{R}^{\Omega} = W \oplus W^{\perp}$, which is called the *direct sum* of W and W^{\perp} : this means that if $v \in \mathbb{R}^{\Omega}$ then there are unique vectors $w \in W$ and $u \in W^{\perp}$ with v = w + u.

The last fact enables us to make the following definition.

Definition The map $P: \mathbb{R}^{\Omega} \to \mathbb{R}^{\Omega}$ defined by

$$Pv \in W$$
 and $v - Pv \in W^{\perp}$

is called the *orthogonal projector* onto W.

To show that *P* is the orthogonal projector onto *W* it is enough to show that Pv = v for *v* in *W* and Pv = 0 for *v* in W^{\perp} .

The orthogonal projector *P* is a linear transformation. We shall identify it with the matrix that represents it with respect to the basis $\{\chi_{\omega} : \omega \in \Omega\}$. The phrase 'orthogonal projector' will frequently be abbreviated to 'projector'.

Lemma 2.1 Let W and U be subspaces of \mathbb{R}^{Ω} with orthogonal projectors P and Q respectively. Then

- (i) $P^2 = P$ (that is, P is idempotent);
- (ii) $\langle P\chi_{\alpha}, \chi_{\beta} \rangle = \langle \chi_{\alpha}, P\chi_{\beta} \rangle$ and hence P is symmetric;
- (*iii*) dim W = tr(P);
- (iv) if $U = W^{\perp}$ then $Q = I_{\Omega} P$;
- (v) if $U \perp W$ then $PQ = QP = O_{\Omega}$.

Commuting projectors have an importance beyond spaces that are actually orthogonal to each other.

Definition Let *W* and *U* be subspaces of \mathbb{R}^{Ω} with orthogonal projectors *P* and *Q* respectively. Then *W* and *U* are *geometrically orthogonal* to each other if PQ = QP.

Lemma 2.2 If W and U are geometrically orthogonal then

- (i) PQ is the orthogonal projector onto $W \cap U$;
- (ii) $\left(W \cap (W \cap U)^{\perp}\right) \perp U.$

26

2.1. ORTHOGONALITY

- **Proof** (i) We need to prove that PQ is the identity on $W \cap U$ and maps everything in $(W \cap U)^{\perp}$ to the zero vector. If $v \in W \cap U$ then PQv = Pv = v. If $v \in (W \cap U)^{\perp} = W^{\perp} + U^{\perp}$ then v = x + y with x in W^{\perp} and y in U^{\perp} so PQv = PQx + PQy = QPx + PQy = 0 because Px = Qy = 0. (This '0' is the zero vector in \mathbb{R}^{Ω} .)
 - (ii) If $v \in W \cap (W \cap U)^{\perp}$ then Pv = v and PQv = 0 so Qv = QPv = PQv = 0 so $v \in U^{\perp}$.

Property (ii) gives some clue to the strange name 'geometric orthogonality'. The space $W \cap (W \cap U)^{\perp}$ is the orthogonal complement of $W \cap U$ inside W, and $U \cap (W \cap U)^{\perp}$ is the orthogonal complement of $W \cap U$ inside U. So geometric orthogonality means that these two complements are orthogonal to each other as well as to $W \cap U$:

$$\left(W\cap (W\cap U)^{\perp}
ight)\perp \left(U\cap (W\cap U)^{\perp}
ight).$$

Thus subspaces W and U are geometrically orthogonal if they are as orthogonal as they can be given that they have a non-zero intersection.

Example 2.1 In \mathbb{R}^3 , let *W* be the *xy*-plane and let *U* be the *xz*-plane. Then $W \cap U$ is the *x*-axis; $W \cap (W \cap U)^{\perp}$ is the *y*-axis; and $U \cap (W \cap U)^{\perp}$ is the *z*-axis. So the *xy*-plane is geometrically orthogonal to the *xz*-plane.

On the other hand, the *x*-axis is not geometrically orthogonal to the plane x = y.

Lemma 2.3 Let W_1, \ldots, W_r be subspaces of \mathbb{R}^{Ω} with orthogonal projectors P_1, \ldots, P_r which satisfy

$$(i) \sum_{i=1}^r P_i = I_{\Omega};$$

(*ii*)
$$P_i P_j = O_\Omega$$
 if $i \neq j$.

Then \mathbb{R}^{Ω} is the direct sum $W_1 \oplus W_2 \oplus \cdots \oplus W_r$.

Proof We need to show that every vector v in \mathbb{R}^{Ω} has a unique expression as a sum of vectors in the W_i . Let $v_i = P_i v$. Then

$$v = Iv = \left(\sum P_i\right)v = \sum (P_iv) = \sum v_i$$

with v_i in W_i , so $\mathbb{R}^{\Omega} = W_1 + W_2 + \cdots + W_r$.

For uniqueness, suppose that $v = \sum w_i$ with w_i in W_i . Then

$$v_j = P_j v = P_j \left(\sum_i w_i\right) = P_j \left(\sum_i P_i w_i\right) = \left(\sum_i P_j P_i w_i\right) = P_j P_j w_j = w_j.$$

2.2 The algebra

Given an association scheme on Ω with *s* associate classes and adjacency matrices A_0, A_1, \ldots, A_s , let

$$\mathcal{A} = \left\{ \sum_{i=0}^s \lambda_i A_i : \lambda_0, \ \dots, \ \lambda_s \in \mathbb{R}
ight\}.$$

It is clear that the adjacency matrices are linearly independent, for if $(\alpha, \beta) \in C_j$ then

$$\left(\sum_i \lambda_i A_i\right)(\alpha,\beta) = \lambda_j.$$

Therefore \mathcal{A} has dimension s + 1 as a vector space over \mathbb{R} . It is closed under multiplication, because of Equation (1.1), so it is an algebra. It is called the *Bose-Mesner algebra*.

If $M \in \mathcal{A}$ then M is symmetric, because every adjacency matrix is symmetric. By a standard result of linear algebra, M is diagonalizable over \mathbb{R} . This means that it has distinct real eigenvalues $\lambda_1, \ldots, \lambda_r$ (say, because we do not know the value of r) with eigenspaces W_1, \ldots, W_r (this means that $W_j = \{v \in \mathbb{R}^{\Omega} : Mv = \lambda_j v\}$) such that

- $R^{\Omega} = W_1 \oplus W_2 \oplus \cdots \oplus W_r;$
- the minimum polynomial of *M* is $\prod_{j=1}^{r} (X \lambda_j)$, with no repeated factors.

In fact, not only is *M* diagonalizable but also $W_i \perp W_j$ if $i \neq j$.

The orthogonal projector P_i onto W_i is given by

$$P_{i} = \frac{\prod_{j \neq i} (M - \lambda_{j}I)}{\prod_{j \neq i} (\lambda_{i} - \lambda_{j})},$$
(2.1)

for if $v \in W_i$ then

$$\left(\prod_{j\neq i} (M-\lambda_j I)\right) v = \left(\prod_{j\neq i} (\lambda_i - \lambda_j)\right) v$$

but if $v \in W_k$ with $k \neq i$ then

$$\left(\prod_{j\neq i} (M-\lambda_j I)\right)v=0.$$

2.2. THE ALGEBRA

Because \mathcal{A} is an algebra containing I, \mathcal{A} contains all non-negative powers of M, so \mathcal{A} contains the projectors P_1, \ldots, P_r .

Note also that

$$M = \sum_{i=1}^{r} \lambda_i P_i. \tag{2.2}$$

If none of the eigenvalues is zero then M is invertible and

$$M^{-1} = \sum_{i=1}^r \frac{1}{\lambda_i} P_i,$$

which is also in \mathcal{A} .

We need to consider something more general than an inverse. Suppose that f is any function from any set S to any set T. Then a function $g: T \to S$ is called a *generalized inverse* of f if fgf = f and gfg = g. It is evident that set functions always have generalized inverses: if $y \in \text{Im}(f)$ then let g(y) be any element x of S with f(x) = y; if $y \notin \text{Im}(f)$ then g(y) may be any element of S. If f is invertible then $g = f^{-1}$; otherwise there are several possibilities for g. However, when there is more structure then generalized inverses; nor do continuous functions in topology. However, linear transformations do have generalized inverses.

If *M* is diagonalizable then one of its generalized inverses has a special form. It is called the *Drazin* inverse or *Moore-Penrose* generalized inverse and written M^- . This given by

$$M^- = \sum_{\substack{i=1\ \lambda_i
eq 0}}^r rac{1}{\lambda_i} P_i.$$

If $M \in \mathcal{A}$ then $M^- \in \mathcal{A}$.

That concludes the properties of a single element of \mathcal{A} . The key fact for dealing with two or more matrices in \mathcal{A} is that \mathcal{A} is *commutative*; that is, if $M \in \mathcal{A}$ and $N \in \mathcal{A}$ then MN = NM. This follows from Lemma 1.2. The following rather technical lemma is the building block for the main result.

Lemma 2.4 Let U_1, \ldots, U_m be non-zero orthogonal subspaces of \mathbb{R}^{Ω} such that $\mathbb{R}^{\Omega} = U_1 \oplus \cdots \oplus U_m$. For $1 \leq i \leq m$, let Q_i be the orthogonal projector onto U_i . Let M be a symmetric matrix which commutes with Q_i for $1 \leq i \leq m$. Let the eigenspaces of M be V_1, \ldots, V_r . Let the non-zero subspaces among the intersections $U_i \cap V_j$ be W_1, \ldots, W_t . Then

- (*i*) $\mathbb{R}^{\Omega} = W_1 \oplus \cdots \oplus W_t$;
- (*ii*) *if* $k \neq l$ *then* $W_k \perp W_l$;

- (iii) for $1 \leq k \leq t$, the space W_k is contained in an eigenspace of M;
- (iv) for $1 \le k \le t$, the orthogonal projector onto W_k is a polynomial in Q_1, \ldots, Q_m and M.

Proof Part (iii) is immediate from the definition of the W_k . So is part (ii), because $U_{i_1} \perp U_{i_2}$ if $i_1 \neq i_2$ and $V_{j_1} \perp V_{j_2}$ if $j_1 \neq j_2$ so the two spaces $U_{i_1} \cap V_{j_1}$ and $U_{i_2} \cap V_{j_2}$ are either orthogonal or equal.

For $1 \le j \le r$, let P_j be the projector onto V_j . Since P_j is a polynomial in M, it commutes with Q_i , so U_i is geometrically orthogonal to V_j . By Lemma 2.2, the orthogonal projector onto $U_i \cap V_j$ is $Q_i P_j$, which is a polynomial in Q_i and M. This proves (iv).

Finally, $Q_i P_j = O$ precisely when $U_i \cap P_j = \{0\}$, so the sum of the orthogonal projectors onto the spaces W_k is the sum of the non-zero products $Q_i P_j$, which is equal to the sum of all the products $Q_i P_j$. But

$$\sum_{i} \sum_{j} Q_{i} P_{j} = \left(\sum_{i} Q_{i}\right) \left(\sum_{j} P_{j}\right) = I^{2} = I,$$

so Lemma 2.3 shows that $\mathbb{R}^{\Omega} = W_1 \oplus \cdots \oplus W_t$, proving (i).

Corollary 2.5 If M and N are commuting symmetric matrices in $\mathbb{R}^{\Omega \times \Omega}$ then \mathbb{R}^{Ω} is the direct sum of the non-zero intersections of the eigenspaces of M and N. Moreover, these spaces are mutually orthogonal and their orthogonal projectors are polynomials in M and N.

Proof Apply Lemma 2.4 to *M* and the eigenspaces of *N*.

If W is contained in an eigenspace of a matrix M, I shall call it a *sub-eigenspace* of M.