1.3 Matrices

Given a field F, the set F^{Ω} of functions from Ω to F forms a vector space. Addition is defined pointwise: for f and g in F^{Ω} ,

$$(f+g)(\omega) = f(\omega) + g(\omega)$$
 for ω in Ω .

Scalar multiplication is also defined pointwise: for λ in F and f in F^{Ω} ,

$$(\lambda f)(\omega) = \lambda(f(\omega))$$
 for ω in Ω .

For ω in $\Omega,$ let χ_ω be the characteristic function of $\omega;$ that is

$$\begin{array}{lll} \chi_{\omega}(\omega) &=& 1 \\ \chi_{\omega}(\alpha) &=& 0 & \quad \mbox{for } \alpha \mbox{ in } \Omega \mbox{ with } \alpha \neq \omega. \end{array}$$

Then $f = \sum_{\omega \in \Omega} f(\omega) \chi_{\omega}$ for all f in F^{Ω} , and so $\{\chi_{\omega} : \omega \in \Omega\}$ forms a natural basis of F^{Ω} : hence dim $F^{\Omega} = |\Omega|$.

For any subset Δ of Ω it is also convenient to define χ_{Δ} in F^{Ω} by

$$\chi_{\Delta}(\omega) = \begin{cases} 1 & \text{if } \omega \in \Delta \\ 0 & \text{if } \omega \notin \Delta . \end{cases}$$

so that $\chi_{\Delta} = \sum_{\omega \in \Delta} \chi_{\omega}$.

Given two finite sets Γ and Δ , we can form their product

$$\Gamma \times \Delta = \{(\gamma, \delta) : \gamma \in \Gamma, \ \delta \in \Delta\},\$$

which may be thought of as a rectangle, as in Figure 1.7. Applying the preceding

Figure 1.7: The product set $\Gamma \times \Delta$

ideas to $\Gamma \times \Delta$, we obtain the vector space $F^{\Gamma \times \Delta}$ of all functions from $\Gamma \times \Delta$ to F. It has dimension $|\Gamma| \times |\Delta|$. If M is such a function, we usually write $M(\gamma, \delta)$

10

1.3. MATRICES

rather than $M((\gamma, \delta))$. In fact, *M* is just a matrix, with its rows labelled by Γ and its columns labelled by Δ . So long as we retain this labelling, it does not matter in what order we write the rows and columns.

In fact, what most people regard as an $m \times n$ matrix over F is just a matrix in $F^{\Gamma \times \Delta}$ with $\Gamma = \{1, \ldots, m\}$ and $\Delta = \{1, \ldots, n\}$. The usual convention is that row 1 appears first, etc., so that order *does* matter but labelling is not needed. Here I use the opposite convention (order does not matter, but labelling is needed) because usually the elements of Γ and Δ are not integers.

Some examples of matrices with such labelled rows and columns were given in Example 1.5.

If $M \in F^{\Gamma \times \Delta}$ and $\Gamma = \Delta$ then we say that *M* is *square*. This is stronger than merely having the same number of rows as of columns. If we need to emphasize the set, we say that *M* is square on Δ .

The *transpose* of *M* is the matrix M' in $F^{\Delta \times \Gamma}$ defined by

$$M'(\delta, \gamma) = M(\gamma, \delta)$$
 for δ in Δ and γ in Γ .

The matrix *M* in $F^{\Delta \times \Delta}$ is *symmetric* if M' = M. There are three special symmetric matrices in $F^{\Delta \times \Delta}$:

$$I_{\Delta}(\delta_1, \delta_2) = \begin{cases} 1 & \text{if } \delta_1 = \delta_2 \\ 0 & \text{otherwise;} \end{cases}$$
$$J_{\Delta}(\delta_1, \delta_2) = 1 & \text{for all } \delta_1, \delta_2 \text{ in } \Delta;$$
$$O_{\Delta}(\delta_1, \delta_2) = 0 & \text{for all } \delta_1, \delta_2 \text{ in } \Delta.$$

Moreover, if $f \in F^{\Delta}$ we define the symmetric matrix diag(f) in $F^{\Delta \times \Delta}$ by

diag
$$(f)(\delta_1, \delta_2) = \begin{cases} f(\delta_1) & \text{if } \delta_1 = \delta_2 \\ 0 & \text{otherwise.} \end{cases}$$

Matrix multiplication is possible when the labelling sets are compatible. If $M_1 \in F^{\Gamma \times \Delta}$ and $M_2 \in F^{\Delta \times \Phi}$ then $M_1 M_2$ is the matrix in $F^{\Gamma \times \Phi}$ defined by

$$(M_1M_2)(\gamma, \phi) = \sum_{\delta \in \Delta} M_1(\gamma, \delta) M_2(\delta, \phi).$$

All the usual results about matrix multiplication hold. In particular, matrix multiplication is associative, and $(M_1M_2)' = M'_2M'_1$.

Similarly, if $M \in F^{\Gamma \times \Delta}$ then M defines a linear transformation from F^{Δ} to F^{Γ} by

$$f \mapsto Mf$$

where

$$(Mf)(\gamma) = \sum_{\delta \in \Delta} M(\gamma, \delta) f(\delta)$$
 for $\gamma \in \Gamma$.

If Φ is any subset of $\Gamma \times \Delta$ then its characteristic function χ_{Φ} satisfies

$$\chi_{\Phi}(\gamma, \delta) = \begin{cases} 1 & \text{if } (\gamma, \delta) \in \Phi \\ 0 & \text{otherwise.} \end{cases}$$

In the special case that $\Gamma = \Delta = \Omega$ we call χ_{Φ} the *adjacency matrix* of Φ and write it A_{Φ} . In particular,

$$egin{array}{rcl} A_{\Omega imes\Omega}&=&J_\Omega\ A_\emptyset&=&O_\Omega\ A_{ ext{Diag}(\Omega)}&=&I_\Omega. \end{array}$$

For an association scheme with classes C_0 , C_1 , ..., C_s , we write A_i for the adjacency matrix A_{C_i} . Thus the (α, β) -entry of A_i is equal to 1 if α and β are *i*-th associates; otherwise it is equal to 0.

Condition (iii) in the definition of association scheme has a particularly nice consequence for multiplication of the adjacency matrices: it says that

$$A_i A_j = \sum_{k=0}^{3} p_{ij}^k A_k.$$
(1.1)

For suppose that $(\alpha, \beta) \in C_k$. Then the (α, β) -entry of the right-hand side of Equation (1.1) is equal to p_{ij}^k , while the (α, β) -entry of the left-hand side is equal to

$$\begin{aligned} \left(A_i A_j \right) (\boldsymbol{\alpha}, \boldsymbol{\beta}) &= \sum_{\boldsymbol{\gamma} \in \Omega} A_i(\boldsymbol{\alpha}, \boldsymbol{\gamma}) A_j(\boldsymbol{\gamma}, \boldsymbol{\beta}) \\ &= \left| \left\{ \boldsymbol{\gamma} : (\boldsymbol{\alpha}, \boldsymbol{\gamma}) \in \mathcal{C}_i \text{ and } (\boldsymbol{\gamma}, \boldsymbol{\beta}) \in \mathcal{C}_j \right\} \right| \\ &= p_{ij}^k \end{aligned}$$

because the product $A_i(\alpha, \gamma)A_j(\gamma, \beta)$ is zero unless $(\alpha, \gamma) \in C_i$ and $(\gamma, \beta) \in C_j$, in which case it is 1.

This leads to a definition of association schemes in terms of the adjacency matrices.

Definition (Third definition of association scheme) An *association scheme* with *s* associate classes on a finite set Ω is a set of matrices A_0, A_1, \ldots, A_s in $\mathbb{R}^{\Omega \times \Omega}$, all of whose entries are equal to 0 or 1, such that

- (i)'' $A_0 = I_\Omega;$
- (ii)" A_i is symmetric for i = 1, ..., s;
- (iii)" for all *i*, *j* in $\{1, ..., s\}$, the product $A_i A_j$ is a linear combination of $A_0, A_1, ..., A_s$;

1.3. MATRICES

(iv)" none of the A_i is equal to O_{Ω} , and $\sum_{i=0}^{s} A_i = J_{\Omega}$.

Notice that we do not need to specify that the coefficients in (iii)" be integers: every entry in A_iA_j is a non-negative integer if all the entries in A_i and A_j are 0 or 1. Condition (iv)" is the analogue of the sets C_0, \ldots, C_s forming a partition of $\Omega \times \Omega$.

Since A_i is symmetric with entries in $\{0, 1\}$, the diagonal entries of A_i^2 are the row-sums of A_i . Condition (iii)" implies that A_i^2 has a constant element, say a_i , on its diagonal. Therefore every row and every column of A_i contains a_i entries equal to 1. Hence $A_i J_{\Omega} = J_{\Omega} A_i = a_i J_{\Omega}$. Moreover, $A_0 A_i = A_i A_0 = A_i$. Thus condition (iii)" can be checked by, for each *i* in $\{1, \ldots, s\}$, verifying that A_i has constant row-sums and that, for all but one value of *j* in $\{1, \ldots, s\}$, the product $A_i A_j$ is a linear combination of A_0, \ldots, A_s . In fact, the first check is superfluous, because it is a byproduct of checking A_i^2 .

Example 1.6 Let Λ be a Latin square of size *n*: an $n \times n$ array filled with *n* letters in such a way that each letter occurs once in each row and once in each column. A Latin square of size 4 is shown in Figure 1.8(a).

Let Ω be the set of n^2 cells in the array. For α , β in Ω with $\alpha \neq \beta$ let α and β be first associates if α and β are in the same row or are in the same column or have the same letter, and let α and β be second associates otherwise. Figure 1.8(b) shows one element α and marks all its first associates as β .

A	B	С	D
D	A	B	С
С	D	Α	B
B	С	D	A

(a) A Latin square

	β	
		β
β	β	β
β		
	β β	β β β β

(b) An element α and all its first associates β

Figure 1.8: A association scheme of Latin-square type

We need to check that all the nine products A_iA_j are linear combinations of A_0 , A_1 and A_2 . Five products involve A_0 , which is I, so there is nothing to check. (Here and elsewhere we omit the suffix from I, J etc. when the set involved is clear from the context.) I claim that only the product A_1^2 needs to be checked.

To check A_1^2 , we need a simple expression for A_1 . Let *R* be the adjacency matrix of the subset

$$\{(\alpha, \beta) : \alpha \text{ and } \beta \text{ are in the same row}\}\$$

and let C and L be the adjacency matrices of the similarly-defined subsets for columns and letters. Then

$$A_1 = R + C + L - 3I,$$

because the elements of $\text{Diag}(\Omega)$ are counted in each of *R*, *C*, and *L* and need to be removed. Moreover, $A_2 = J - A_1 - I$. These adjacency matrices have constant row-sums: $a_1 = 3(n-1)$ and $a_2 = n^2 - 3(n-1) - 1 = (n-2)(n-1)$.

Now

$$R^{2}(\alpha,\beta) = \sum_{\gamma} R(\alpha,\gamma)R(\gamma,\beta)$$

= $|\{\gamma:\gamma \text{ is the same row as } \alpha \text{ and } \beta\}|$
= $\begin{cases} n & \text{if } \alpha \text{ and } \beta \text{ are in the same row} \\ 0 & \text{otherwise} \end{cases}$
= $nR(\alpha,\beta)$

so $R^2 = nR$. Similarly $C^2 = nC$ and $L^2 = nL$. Also

$$RC(\alpha, \beta) = \sum_{\gamma} R(\alpha, \gamma) C(\gamma, \beta)$$

= $|\{\gamma : \gamma \text{ is in the same row as } \alpha \text{ and the same column as } \beta\}|$
= 1

so RC = J. Similarly CR = RL = LR = CL = LC = J.

Hence $A_1^2 = n(R+C+L) + 6J - 6(R+C+L) + 9I$, which is a linear combination of A_1 , J and I, hence of A_1 , A_2 and A_0 .

Now let us verify my claim that no further products need to be evaluated. We do not need to check A_1A_2 , because

$$A_1A_2 = A_1(J - A_1 - I) = a_1J - A_1^2 - A_1.$$

Neither do we need to check A_2A_1 , because

$$A_2A_1 = (J - A_1 - I)A_1 = a_1J - A_1^2 - A_1.$$

Finally, we do not need to check A_2^2 either, because

$$A_2^2 = A_2(J - A_1 - I) = a_2J - A_2A_1 - A_2.$$

This association scheme is said to be of *Latin-square type* L(3,n).

1.3. MATRICES

It is no accident that $A_1A_2 = A_2A_1$ in Example 1.6.

Lemma 1.2 If $A_0, A_1, ..., A_s$ are the adjacency matrices of an association scheme then $A_iA_j = A_jA_i$ for all i, j in $\{0, 1, ..., s\}$.

Proof

$$A_{j}A_{i} = A'_{j}A'_{i}, \text{ because the adjacency matrices are symmetric,}$$

$$= (A_{i}A_{j})'$$

$$= \left(\sum_{k} p_{ij}^{k}A_{k}\right)'$$

$$= \sum_{k} p_{ij}^{k}A'_{k}$$

$$= \sum_{k} p_{ij}^{k}A_{k}, \text{ because the adjacency matrices are symmetric,}$$

$$= A_{i}A_{j}. \quad \blacksquare$$

As we saw in Example 1.6, there is very little to check when there are only two associate classes.

Lemma 1.3 Let A be a symmetric matrix in $\mathbb{R}^{\Omega \times \Omega}$ with zeros on the diagonal and all entries in $\{0,1\}$. Suppose that $A \neq O$ and $A \neq J - I$. Then $\{I,A,J-A-I\}$ is an association scheme on Ω if and only if A^2 is a linear combination of I, A and J.

Consideration of the α -th row of A_iA_j sheds new light on the graph way of looking at association schemes. Stand at the vertex α . Take a step along an edge coloured *i* (if *i* = 0 this means stay still). Then take a step along an edge coloured *j*. Where can you get to? If β is joined to α by a *k*-coloured edge, then you can get to β in this way if $p_{ij}^k \neq 0$. In fact, there are exactly p_{ij}^k such two-step ways of getting to β from α .