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1.3 Matrices

Given a fieldF , the setFΩ of functions fromΩ to F forms a vector space. Addi-
tion is defined pointwise: forf andg in FΩ,

( f +g)(ω) = f (ω)+g(ω) for ω in Ω.

Scalar multiplication is also defined pointwise: forλ in F and f in FΩ,

(λ f )(ω) = λ( f (ω)) for ω in Ω.

For ω in Ω, let χω be the characteristic function ofω; that is

χω(ω) = 1

χω(α) = 0 for α in Ω with α 6= ω.

Then f = ∑ω∈Ω f (ω)χω for all f in FΩ, and so{χω : ω ∈Ω} forms a natural basis
of FΩ: hence dimFΩ = |Ω|.

For any subset∆ of Ω it is also convenient to defineχ∆ in FΩ by

χ∆(ω) =
{

1 if ω ∈ ∆
0 if ω /∈ ∆.

so thatχ∆ = ∑ω∈∆ χω.
Given two finite setsΓ and∆, we can form their product

Γ×∆ = {(γ,δ) : γ ∈ Γ, δ ∈ ∆} ,

which may be thought of as a rectangle, as in Figure 1.7. Applying the preceding

(γ,δ)γ

δ

Γ

∆

Figure 1.7: The product setΓ×∆

ideas toΓ×∆, we obtain the vector spaceFΓ×∆ of all functions fromΓ×∆ to
F . It has dimension|Γ| × |∆|. If M is such a function, we usually writeM(γ,δ)



1.3. MATRICES 11

rather thanM ((γ,δ)). In fact,M is just a matrix, with its rows labelled byΓ and
its columns labelled by∆. So long as we retain this labelling, it does not matter in
what order we write the rows and columns.

In fact, what most people regard as anm×n matrix overF is just a matrix in
FΓ×∆ with Γ = {1, . . . ,m} and∆ = {1, . . . ,n}. The usual convention is that row 1
appears first, etc., so that orderdoesmatter but labelling is not needed. Here I use
the opposite convention (order does not matter, but labelling is needed) because
usually the elements ofΓ and∆ are not integers.

Some examples of matrices with such labelled rows and columns were given
in Example 1.5.

If M ∈ FΓ×∆ andΓ = ∆ then we say thatM is square. This is stronger than
merely having the same number of rows as of columns. If we need to emphasize
the set, we say thatM is square on∆.

Thetransposeof M is the matrixM′ in F∆×Γ defined by

M′(δ,γ) = M(γ,δ) for δ in ∆ andγ in Γ.

The matrixM in F∆×∆ is symmetricif M′ = M. There are three special symmetric
matrices inF∆×∆:

I∆(δ1,δ2) =
{

1 if δ1 = δ2

0 otherwise;

J∆(δ1,δ2) = 1 for all δ1, δ2 in ∆;

O∆(δ1,δ2) = 0 for all δ1, δ2 in ∆.

Moreover, if f ∈ F∆ we define the symmetric matrix diag( f ) in F∆×∆ by

diag( f )(δ1,δ2) =
{

f (δ1) if δ1 = δ2

0 otherwise.

Matrix multiplication is possible when the labelling sets are compatible. If
M1 ∈ FΓ×∆ andM2 ∈ F∆×Φ thenM1M2 is the matrix inFΓ×Φ defined by

(M1M2)(γ,φ) = ∑
δ∈∆

M1(γ,δ)M2(δ,φ).

All the usual results about matrix multiplication hold. In particular, matrix multi-
plication is associative, and(M1M2)′ = M′2M′1.

Similarly, if M ∈ FΓ×∆ thenM defines a linear transformation fromF∆ to FΓ

by
f 7→M f

where
(M f )(γ) = ∑

δ∈∆
M(γ,δ) f (δ) for γ ∈ Γ.
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If Φ is any subset ofΓ×∆ then its characteristic functionχΦ satisfies

χΦ(γ,δ) =
{

1 if (γ,δ) ∈Φ
0 otherwise.

In the special case thatΓ = ∆ = Ω we callχΦ theadjacency matrixof Φ and write
it AΦ. In particular,

AΩ×Ω = JΩ

A/0 = OΩ

ADiag(Ω) = IΩ.

For an association scheme with classesC0, C1, . . . , Cs, we write Ai for the
adjacency matrixACi . Thus the(α,β)-entry ofAi is equal to 1 ifα andβ arei-th
associates; otherwise it is equal to 0.

Condition (iii) in the definition of association scheme has a particularly nice
consequence for multiplication of the adjacency matrices: it says that

AiA j =
s

∑
k=0

pk
i j Ak. (1.1)

For suppose that(α,β)∈ Ck. Then the(α,β)-entry of the right-hand side of Equa-
tion (1.1) is equal topk

i j , while the(α,β)-entry of the left-hand side is equal to(
AiA j

)
(α,β) = ∑

γ∈Ω
Ai(α,γ)A j(γ,β)

=
∣∣{γ : (α,γ) ∈ Ci and(γ,β) ∈ C j

}∣∣
= pk

i j

because the productAi(α,γ)A j(γ,β) is zero unless(α,γ) ∈ Ci and(γ,β) ∈ C j , in
which case it is 1.

This leads to a definition of association schemes in terms of the adjacency
matrices.

Definition (Third definition of association scheme) An association schemewith
sassociate classes on a finite setΩ is a set of matricesA0, A1, . . . ,As in RΩ×Ω, all
of whose entries are equal to 0 or 1, such that

(i)′′ A0 = IΩ;

(ii) ′′ Ai is symmetric fori = 1, . . . ,s;

(iii) ′′ for all i, j in {1, . . . ,s}, the productAiA j is a linear combination ofA0, A1,
. . . ,As;
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(iv)′′ none of theAi is equal toOΩ, and∑s
i=0Ai = JΩ.

Notice that we do not need to specify that the coefficients in (iii)′′ be integers:
everyentry in AiA j is a non-negative integer if all the entries inAi andA j are 0
or 1. Condition (iv)′′ is the analogue of the setsC0, . . . , Cs forming a partition of
Ω×Ω.

SinceAi is symmetric with entries in{0,1}, the diagonal entries ofA2
i are the

row-sums ofAi . Condition (iii)′′ implies thatA2
i has a constant element, sayai ,

on its diagonal. Therefore every row and every column ofAi containsai entries
equal to 1. HenceAiJΩ = JΩAi = aiJΩ. Moreover,A0Ai = AiA0 = Ai . Thus
condition (iii)′′ can be checked by, for eachi in {1, . . . ,s}, verifying thatAi has
constant row-sums and that, for all but one value ofj in {1, . . . ,s}, the product
AiA j is a linear combination ofA0, . . . , As. In fact, the first check is superfluous,
because it is a byproduct of checkingA2

i .

Example 1.6 Let Λ be a Latin square of sizen: ann×n array filled withn letters
in such a way that each letter occurs once in each row and once in each column.
A Latin square of size 4 is shown in Figure 1.8(a).

Let Ω be the set ofn2 cells in the array. Forα, β in Ω with α 6= β let α and
β be first associates ifα andβ are in the same row or are in the same column or
have the same letter, and letα andβ be second associates otherwise. Figure 1.8(b)
shows one elementα and marks all its first associates asβ.

A B C D
D A B C
C D A B
B C D A

β β
β β
α β β β
β β

(a) A Latin square (b) An elementα and all
its first associatesβ

Figure 1.8: A association scheme of Latin-square type

We need to check that all the nine productsAiA j are linear combinations of
A0, A1 andA2. Five products involveA0, which isI , so there is nothing to check.
(Here and elsewhere we omit the suffix fromI , J etc. when the set involved is
clear from the context.) I claim that only the productA2

1 needs to be checked.

A0 A1 A2

A0
√ √ √

A1
√

?
A2
√
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To checkA2
1, we need a simple expression forA1. Let R be the adjacency

matrix of the subset

{(α,β) : α andβ are in the same row} ,

and letC and L be the adjacency matrices of the similarly-defined subsets for
columns and letters. Then

A1 = R+C+L−3I ,

because the elements of Diag(Ω) are counted in each ofR, C, andL and need to
be removed. Moreover,A2 = J−A1− I . These adjacency matrices have constant
row-sums:a1 = 3(n−1) anda2 = n2−3(n−1)−1 = (n−2)(n−1).

Now

R2(α,β) = ∑
γ

R(α,γ)R(γ,β)

= |{γ : γ is the same row asα andβ}|

=
{

n if α andβ are in the same row
0 otherwise

= nR(α,β)

soR2 = nR. SimilarlyC2 = nC andL2 = nL. Also

RC(α,β) = ∑
γ

R(α,γ)C(γ,β)

= |{γ : γ is in the same row asα and the same column asβ}|
= 1

soRC= J. SimilarlyCR= RL= LR= CL = LC = J.
HenceA2

1 = n(R+C+ L) + 6J−6(R+C+ L) + 9I , which is a linear combi-
nation ofA1, J andI , hence ofA1, A2 andA0.

Now let us verify my claim that no further products need to be evaluated. We
do not need to checkA1A2, because

A1A2 = A1(J−A1− I) = a1J−A2
1−A1.

Neither do we need to checkA2A1, because

A2A1 = (J−A1− I)A1 = a1J−A2
1−A1.

Finally, we do not need to checkA2
2 either, because

A2
2 = A2(J−A1− I) = a2J−A2A1−A2.

This association scheme is said to be ofLatin-square typeL(3,n).
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It is no accident thatA1A2 = A2A1 in Example 1.6.

Lemma 1.2 If A0, A1, . . . , As are the adjacency matrices of an association scheme
then AiA j = A jAi for all i, j in {0,1, . . .s}.

Proof

A jAi = A′jA
′
i , because the adjacency matrices are symmetric,

=
(
AiA j

)′
=

(
∑
k

pk
i j Ak

)′
= ∑

k

pk
i j A
′
k

= ∑
k

pk
i j Ak, because the adjacency matrices are symmetric,

= AiA j .

As we saw in Example 1.6, there is very little to check when there are only
two associate classes.

Lemma 1.3 Let A be a symmetric matrix inRΩ×Ω with zeros on the diagonal and
all entries in{0,1}. Suppose that A6= O and A6= J− I. Then{I ,A,J−A− I} is
an association scheme onΩ if and only if A2 is a linear combination of I, A and
J.

Consideration of theα-th row of AiA j sheds new light on the graph way of
looking at association schemes. Stand at the vertexα. Take a step along an edge
colouredi (if i = 0 this means stay still). Then take a step along an edge colouredj.
Where can you get to? Ifβ is joined toα by ak-coloured edge, then you can get
to β in this way if pk

i j 6= 0. In fact, there are exactlypk
i j such two-step ways of

getting toβ from α.


