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1.3 Matrices

Given a fieldF, the sefF® of functions fromQ to F forms a vector space. Addi-
tion is defined pointwise: fof andgin F<,

(f+9)(w) = f(w)+9(w) for win Q.
Scalar multiplication is also defined pointwise: fom F and f in F®,
(Af)(w) =A(f(w)) for win Q.
Forwin Q, letx, be the characteristic function of, that is

Xo(w) = 1
Xo(@) = 0  forain Qwith o # w.

Thenf =5 4o f (W)X forall f in F2, and so{x,, : w € Q} forms a natural basis
of F©: hence dinF® = |Q|.
For any subseh of Q it is also convenient to define, in F9 by

(1 fweA
xa(@)={g if o ¢t A.

S0 thatXa = 3 wen Xw-
Given two finite set§ andA, we can form their product

FxA={(y,0):yerl, deA},

which may be thought of as a rectangle, as in Figure 1.7. Applying the preceding
0 A

Figure 1.7: The product sétx A

ideas tol" x A, we obtain the vector spadd *2 of all functions froml" x A to
F. It has dimensionl | x |A|. If M is such a function, we usually writé(y, d)
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rather tharM ((y,d)). In fact, M is just a matrix, with its rows labelled by and
its columns labelled by. So long as we retain this labelling, it does not matter in
what order we write the rows and columns.

In fact, what most people regard asrarx n matrix overF is just a matrix in
FMAwith T = {1,...,m} andA = {1,...,n}. The usual convention is that row 1
appears first, etc., so that orakyesmatter but labelling is not needed. Here | use
the opposite convention (order does not matter, but labelling is needed) because
usually the elements éf andA are not integers.

Some examples of matrices with such labelled rows and columns were given
in Example 1.5.

If M € F'*4 andl" = A then we say thaW is square This is stronger than
merely having the same number of rows as of columns. If we need to emphasize
the set, we say thadl is square om.

Thetransposef M is the matrixM’ in F2<T defined by

M'(3,y) =M(y,d)  fordinAandyinT.

The matrixM in F2*2 is symmetridf M’ = M. There are three special symmetric
matrices inF2<4:

1 ifd =%
1a(81,32) { 0 otherwise;

a(d1,00) = 1 for all 8¢, &, in A;
Oa(01,82) = O for all &1, &7 in A.

Moreover, if f € F4 we define the symmetric matrix digfy) in F4*2 by

. _ [ f(d1) IO =0
diag(f)(d1,82) =
o) (81, 8) {O otherwise.
Matrix multiplication is possible when the labelling sets are compatible. If
M1 € FT*2 andM; € FA*® thenM;M; is the matrix inF"*® defined by

(MiM2)(v, @) = > Ma(v,3)M2(3,¢).
och

All the usual results about matrix multiplication hold. In particular, matrix multi-
plication is associative, an@;1M)" = M4Mj.
Similarly, if M € FT*2 thenM defines a linear transformation froRf to F"
by
fi—sMf
where
(Mf)(y) = ZM(y,é)f(é) foryerl.
oel
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If @ is any subset of x A then its characteristic functiogy satisfies
1 if(y,0)ed
0) = ’
Xo(Y.9) {0 otherwise.

In the special case that= A = Q we callxe theadjacency matrixof ® and write
it Ap. In particular,

Ao = Jo
Ap = Oq
Apiaga) = la-
For an association scheme with classgs (1, ..., G, we write A; for the

adjacency matrid;. Thus the(a, B)-entry of A is equal to 1 ifa andp arei-th
associates; otherwise it is equal to 0.

Condition (iii) in the definition of association scheme has a particularly nice
consequence for multiplication of the adjacency matrices: it says that

AR = 3 PiiAC (1.1)
k=0

For suppose thdt, B) € Ck. Then thga, B)-entry of the right-hand side of Equa-
tion (1.1) is equal tcp}‘j , while the(a, B)-entry of the left-hand side is equal to

(AA) (@,B) = S Ao, V)A|(Y,B)
ye
= |{y:(a,y) € G and(y,B) € G} }|

because the produgi(a,y)Aj(y,B) is zero unlesga,y) € G and(y,B) € Cj, in
which case it is 1.

This leads to a definition of association schemes in terms of the adjacency
matrices.

Definition (Third definition of association scheme) An association schemeith
sassociate classes on a finite 88t a set of matrice8g, Ag, . ..,Asin R2*Q 3|
of whose entries are equal to 0 or 1, such that

)" Ao=lg;
(i) A is symmetric fori =1, ...,s;

(iii)” foralli, jin {1,...,s}, the producjA; is a linear combination oy, Ay,
A,
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(iv)” none of theA is equal toOgq, andS? (A = Jo.

Notice that we do not need to specify that the coefficients irf (@@ integers:
everyentry inAjAj is a non-negative integer if all the entriesAnandAj are 0
or 1. Condition (iv} is the analogue of the set$, ..., Cs forming a partition of
Q x Q.

SinceA; is symmetric with entries if0, 1}, the diagonal entries df? are the
row-sums ofA;. Condition (iiiy’ implies thatA? has a constant element, say
on its diagonal. Therefore every row and every columiofontainsa; entries
equal to 1. Henc&\Jo = JoA = gJo. Moreover,AgAi = AlAg = Ai. Thus
condition (i)’ can be checked by, for eachin {1,...,s}, verifying thatA; has
constant row-sums and that, for all but one valug @f {1,...,s}, the product
AjA; is a linear combination ofy, ..., As. In fact, the first check is superfluous,
because it is a byproduct of checkiag.

Example 1.6 Let A be a Latin square of size ann x n array filled withn letters
in such a way that each letter occurs once in each row and once in each column.
A Latin square of size 4 is shown in Figure 1.8(a).

Let Q be the set ofi cells in the array. Foa, B in Q with a # B let o and
B be first associates d andp are in the same row or are in the same column or
have the same letter, and teand3 be second associates otherwise. Figure 1.8(b)
shows one elemeiot and marks all its first associates[as

A|B|C|D B B
D/AB|C B B
C/ DAB al BIBIB
BIC/D|A BB
(a) A Latin square (b) An elemert and all

its first associateB

Figure 1.8: A association scheme of Latin-square type

We need to check that all the nine produdts,; are linear combinations of
Ao, A1 andAy. Five products involvéyy, which isl, so there is nothing to check.
(Here and elsewhere we omit the suffix frdmJ etc. when the set involved is
clear from the context.) | claim that only the prod@étneeds to be checked.

A0 AL A
ARVARVARY
Aly 2
Az |/
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To checkA%, we need a simple expression f&f. Let R be the adjacency
matrix of the subset
{(a,B) : a andp are in the same rojy

and letC andL be the adjacency matrices of the similarly-defined subsets for
columns and letters. Then

Ai=R+C+L-3l,

because the elements of D{&) are counted in each &, C, andL and need to
be removed. MoreoveA, =J— A; — |. These adjacency matrices have constant
row-sums:a; = 3(n—1) anda,=n*-3(n—1)—1=(n—2)(n—1).

Now

Re(a,B) = Y R(@Y)RY.B)
Y

= |{y:yis the same row as andp}|

_ {n if a andp are in the same row

0 otherwise
= nRa,B)

soR? =nR SimilarlyC? = nCandL? = nL. Also
RC(a,8) = > R(a,y)C(v,B)
Y

= |{y:yisin the same row ag and the same column 83|
=1

soRC=J. SimilarlyCR=RL=LR=CL=LC=J.

HenceA? = n(R+C+L)+6J —6(R+C+L) +9l, which is a linear combi-
nation ofA1, J andl, hence ofA;, A, andAy.

Now let us verify my claim that no further products need to be evaluated. We
do not need to check; Ay, because

AP =A(J—A—1) =aid— A2 — Ay
Neither do we need to chedgA;, because

AAL = (J—A1— DA =aid — AT —A;.
Finally, we do not need to ched either, because

A2 =PA(J—A1—1) = axd — AAL — Ay

This association scheme is said to bé afin-square typé.(3,n). =
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It is no accident tha®\; A, = A2A1 in Example 1.6.

Lemma 1.2 If Ag, Ay, ..., Asare the adjacency matrices of an association scheme
then AA; = AjA for alli, jin {0,1,...s}.

Proof

AA = A’jA{ , because the adjacency matrices are symmetric,
= (A7)’

/
gty

= Z P A

= Z p}j- A, because the adjacency matrices are symmetric,
= AAj. =

As we saw in Example 1.6, there is very little to check when there are only
two associate classes.

Lemma 1.3 Let A be a symmetric matrix iR2*9 with zeros on the diagonal and
all entries in{0,1}. Suppose that 4 O and A% J—1I. Then{l,A/JJ—A—1}is
an association scheme @ if and only if A is a linear combination of I, A and
J.

Consideration of the-th row of A/A; sheds new light on the graph way of
looking at association schemes. Stand at the vertékake a step along an edge
coloured (if i = 0 this means stay still). Then take a step along an edge colgured
Where can you get to? 8 is joined toa by ak-coloured edge, then you can get
to B in this way if p}‘j # 0. In fact, there are exactlp{} such two-step ways of
getting tof3 from a.



