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4.3 Orthogonal block structures

Definition An orthogonal block structureon a setΩ is a setF of pairwise or-
thogonal uniform partitions ofΩ which is closed under∧ and∨ (in particular,
F containsU andE).

Thus, in Example 4.1, the set{E, rows, columns, rectangles, U} is an or-
thogonal block structure. So is the set{E, rows, columns, letters, U} in Exam-
ple 4.2.

Note that, if all the other conditions for an orthogonal block structure are met,
then orthogonality between partitionsF andG is easy to check: whenever{α,β}
is contained in anF-class and{β,γ} is contained in aG-class then there must be
some elementδ such that{α,δ} is contained in aG-class and{δ,γ} is contained
in anF-class. That is, wherever can be reached in the two-colour graph forF ∨G
by a red edge followed by a blue edge can also be reached by a blue edge followed
by a red edge.

Theorem 4.8 Let F be an orthogonal block structure onΩ. For F in F , define
the subsetCF of Ω×Ω by

(α,β) ∈ CF if F =
∧
{G∈ F : α andβ are in the same G-class} .

Then{CF : F ∈ F , CF 6= /0} forms an association scheme onΩ with valencies aF ,
where

aF = ∑
G∈F

µ(G,F)kG.

Proof The non-emptyCF do form a partition ofΩ×Ω, becauseF is closed
under∧. They are symmetric. The equality partitionE is in F andCE = Diag(Ω).

Let AF be the adjacency matrix forCF . Then

α andβ are in the sameF-class ⇐⇒ there is someG 4 F
with (α,β) ∈ CG,

so
RF = ∑

G4F

AG = ∑
G∈F

ζ(G,F)AG = ∑
G∈F

ζ′(F,G)AG. (4.3)

This is true for allF in F . The inverse of the matrixζ′ is µ′, so Equation (4.3) can
be inverted (this is calledMöbius inversion) to give

AF = ∑
G∈F

µ′(F,G)RG = ∑
G∈F

µ(G,F)RG. (4.4)
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Taking row sums of Equation (4.4) gives

aF = ∑
G∈F

µ′(F,G)kG = ∑
G∈F

µ(G,F)kG. (4.5)

As usual, letA be the subspace ofRΩ×Ω spanned by{AF : F ∈ F }. We must
show thatA is closed under multiplication. Equations (4.3) and (4.4) show that
A = span{RF : F ∈ F }. All the partitions are uniform, so Proposition 4.1 shows
that A = span{PF : F ∈ F }. The partitions are pairwise orthogonal, andF is
closed under∨, so we can apply Lemma 4.4 (i) and deduce that span{PF : F ∈ F }
is closed under multiplication.

Theorem 4.9 Let F be an orthogonal block structure onΩ. For F in F , put

WF = VF ∩

(
∑

G�F

VG

)⊥
.

Then the non-zero spaces WF , for F in F , are the strata for the association
scheme. Their projectors SF satisfy

SF = ∑
G∈F

µ(F,G)PG,

and their dimensions dF satisfy

dF = ∑
G∈F

µ(F,G)nG.

Proof Theorem 4.7 shows that, for allF in F ,

VF =
⊕
G<F

WG

and the summands are orthogonal. So ifSF is the projector ontoWF then

PF = ∑
G<F

SG = ∑
G∈F

ζ(F,G)SG. (4.6)

Möbius inversion gives
SF = ∑

G∈F
µ(F,G)PG. (4.7)

Thus eachSF is in the Bose-Mesner algebraA of the association scheme. But
eachSF is idempotent, so Lemma 2.7 shows that eachSF is a sum of zero or more
stratum projectors. IfF 6= G thenWF ⊥WG, soSF andSG cannot contain any stra-
tum projectors in common. Thus no linear combination of{SF : F ∈ F } projects
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onto any non-zero proper subspace ofWG, for anyG in F . But Equations (4.6)
and (4.7) show thatA = span{SF : F ∈ F }, so the non-zero spacesWF must be
precisely the strata.

Taking the trace of both sides of Equation (4.7) gives

dF = ∑
G∈F

µ(F,G)nG, (4.8)

because trPG = dimVG = nG.

The character table of the association scheme follows immediately from the
work done so far. From Equations (4.4) and (4.6) and Proposition 4.1 we have

AF = ∑
G

µ′(F,G)RG

= ∑
G

µ′(F,G)kGPG

= ∑
G

µ′(F,G)kG∑
H

ζ(G,H)SH ,

so
C = µ′diag(k)ζ. (4.9)

Inversion then gives
D = C−1 = µdiag(k)−1ζ′. (4.10)

We can check that this agrees with the results found in Chapter 2. From Equa-
tions (4.5) and (4.8) we obtain the (symmetric) diagonal matrices of valencies and
dimensions as

diag(a) = µ′diag(k) = diag(k)µ

and
diag(d) = µdiag(n).

Applying Corollary 2.13 to Equation (4.9) gives

D =
1
|Ω|

diag(d)C′diag(a)−1

=
1
|Ω|

µdiag(n)ζ′diag(k)µµ−1diag(k)−1

=
1
|Ω|

µdiag(n)ζ′

= µdiag(k)−1ζ′

becausenFkF = |Ω| for all F .
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Although the existence of the M̈obius function is useful for proving general
results, such as Theorems 4.8 and 4.9, it is rarely used in explicit calculations.
The adjacency matrices and their valencies can be calculated recursively, using
Equations (4.4) and (4.5), starting at the bottom of the Hasse diagram. Likewise,
the stratum projectors and the dimensions of the strata are calculated recursively,
using Equations (4.7) and (4.8), starting at the top of the Hasse diagram.

Example 4.1 revisited Write R, C and B respectively forRrows, Rcolumns and
Rrectangles. We havekE = 1, krows = 4, kcolumns= 2, krectangles= 8 andkU = 24.
Working from the bottom of the Hasse diagram in Figure 4.1, we obtain

AE = I aE = 1
Arows = R− I arows = 3
Acolumns = C− I acolumns = 1
Arectangles = B−R−C+ I arectangles = 3
AU = J−B aU = 16.

To obtain the strata, we start at the top of the Hasse diagram. For the dimensions
we use the fact thatnU = 1, nrectangles= 3, ncolumns= 12,nrows = 6 andnE = 24:

SU =
1
24

J dU = 1

Srectangles =
1
8

B− 1
24

J drectangles = 2

Scolumns =
1
2
C− 1

8
B dcolumns = 9

Srows =
1
4

R− 1
8

B drows = 3

SE = I − 1
4

R− 1
2
C+

1
8

B dE = 9.

The character table is now either calculated directly by expressing each adja-
cency matrix above in terms of the stratum projectors, or by using Equation (4.9).
If we keep the elements ofF in the order

E rows columns rectanglesU,

we obtain

C =


1 0 0 0 0
−1 1 0 0 0
−1 0 1 0 0

1 −1 −1 1 0
0 0 0 −1 1




1 0 0 0 0
0 4 0 0 0
0 0 2 0 0
0 0 0 8 0
0 0 0 0 24




1 1 1 1 1
0 1 0 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1


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=


1 0 0 0 0
−1 1 0 0 0
−1 0 1 0 0

1 −1 −1 1 0
0 0 0 −1 1




1 1 1 1 1
0 4 0 4 4
0 0 2 2 2
0 0 0 8 8
0 0 0 0 24



=


1 1 1 1 1
−1 3 −1 3 3
−1 −1 1 1 1

1 −3 −1 3 3
0 0 0 −8 16

 .

Notice that the entries 1 come in thefirst row, while the valencies come in thelast
column.

Likewise we calculate

D =
1
24


1 −1 −1 1 0
0 1 0 −1 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1




24 0 0 0 0
0 6 0 0 0
0 0 12 0 0
0 0 0 3 0
0 0 0 0 1




1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 1 1 1 0
1 1 1 1 1



=
1
24


1 −1 −1 1 0
0 1 0 −1 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1




24 0 0 0 0
6 6 0 0 0

12 0 12 0 0
3 3 3 3 0
1 1 1 1 1



=
1
24


9 −3 −9 3 0
3 3 −3 −3 0
9 −3 9 −3 0
2 2 2 2 −1
1 1 1 1 1

 .

Here the dimensions come in the first column, while the 1s come in the last
row.

This example displays a difficulty which was alluded to at the end of Sec-
tion 2.2. In the association scheme of an orthogonal block structure, the asso-
ciate classes and the strata are both naturally labelled byF , so we normally have
K = E = F . However, the diagonal associate class, usually calledC0, is hereCE,
while the all-1s stratum, usually calledW0, is hereWU . In other words, the special
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associate class and the special stratum correspond to the two different trivial par-
titions. That is why the special entries in the matricesC andD are not all in the
first row and column.

On the other hand, the foregoing example also demonstrates an advantage that
orthogonal block structures have over association schemes in general. There are
explicit, straightforward formulae for the strata and character table, so there is no
need to resort to any of the techniques in Section 2.4.

If any of theCF is empty thenK is a proper subset ofF . Theorem 2.6 shows
that |E | = |K |, soE is also a proper subset ofF ; in fact, the number ofF such
that WF = 0 is the same as the number ofF such thatCF = /0. However, the
partitions which give zero subspaces are not usually the same as those which give
empty subsets ofΩ×Ω.

Example 4.2 revisited Although this association scheme is defined by a single
Latin square, it isnot of the Latin square type L(3,n) described in Example 1.6:
the former first associates have been separated into those in the same row, those
in the same column and those in the same letter. If we writeR, C andL for Rrows,
RcolumnsandRletters, we obtain

AE = I aE = 1
Arows = R− I arows = n−1
Acolumns = C− I acolumns = n−1
Aletters = L− I aletters = n−1
AU = J−R−C−L +2I aU = (n−1)(n−2)

and

SU =
1
n2J dU = 1

Srows =
1
n

R− 1
n2J drows = n−1

Scolumns =
1
n
C− 1

n2J dcolumns = n−1

Sletters =
1
n

L− 1
n2J dletters = n−1

SE = I − 1
n

R− 1
n
C− 1

n
L +

2
n2J dE = (n−1)(n−2).

If n = 2 thenCU = /0 andWE = 0.

More generally, if we havec−2 mutually orthogonaln×n Latin squares then
we can create an orthogonal block structure withc non-trivial partitions of a set
of sizen2 into n classes of sizen. It is also an orthogonal array. Ifc = n+ 1 then
CU = /0 andWE = 0.


