86

4.3 Orthogonal block structures

Definition An orthogonal block structuren a setQ is a set¥ of pairwise or-
thogonal uniform partitions of2 which is closed unden andV (in particular,
F containdJ andE).

Thus, in Example 4.1, the s€E, rows columns rectanglesU} is an or-
thogonal block structure. So is the &, rows columns letters U} in Exam-
ple 4.2.

Note that, if all the other conditions for an orthogonal block structure are met,
then orthogonality between partitioRsandG is easy to check: whenevéa, 3}
is contained in arfr-class and 3,y} is contained in &-class then there must be
some elemend such that{a, &} is contained in &-class and d,y} is contained
in anF-class. That is, wherever can be reached in the two-colour graph\f@
by a red edge followed by a blue edge can also be reached by a blue edge followed
by a red edge.

Theorem 4.8 Let ¥ be an orthogonal block structure dd. For F in F, define
the subset of Q x Q by

(a,B)e e if F= /\{G € ¥ :aandp are in the same G-cla$s

Then{(G:: F € F, (¢ # 0} forms an association scheme Qrwith valencies g,
where

GeF

Proof The non-emptyCeg do form a partition ofQ x Q, becausef is closed
underA. They are symmetric. The equality partitiris in 7 andGe = Diag(Q).
Let A be the adjacency matrix faf=. Then

o andp are in the sam&-class <= there is someG < F
with (a,B) € Ca,

SO

< eF

GeF

This is true for allF in . The inverse of the matri¥ is |/, so Equation (4.3) can
be inverted (this is calleobius inversiohto give

A= 5 U(F,GRs= } H(G,F)Rs. (4.4)

GeF GeF
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Taking row sums of Equation (4.4) gives

a== 5 HF.Gks= 5 WG.Fe. (4.5)

GeF Ge¥F

As usual, letq be the subspace &*? spanned by{Ar : F € F}. We must
show that4 is closed under multiplication. Equations (4.3) and (4.4) show that
A4 =span{Re : F € 7}. All the partitions are uniform, so Proposition 4.1 shows
that 4 = span{Pr : F € F}. The partitions are pairwise orthogonal, afidis
closed undev, so we can apply Lemma 4.4 (i) and deduce that $§panF € 7 }
is closed under multiplication. m

Theorem 4.9 Let ¥ be an orthogonal block structure dd. For F in F, put

1
We =VEN V .

Then the non-zero spacesWor F in ¥, are the strata for the association
scheme. Their projectorsatisfy

S =3 WF.GPs,
Ge¥F

and their dimensionsgdsatisfy

de = > WU(F,G)ne.
GeF

Proof Theorem 4.7 shows that, for &lin F,

Ve = P We

Gi=F

and the summands are orthogonal. S§-ifs the projector ont¥\f then

Pe= > Ss= ) (RO (4.6)
257 2,0
Mobius inversion gives
=3 UF.GPe. (4.7)
GeF

Thus eaclt: is in the Bose-Mesner algebra of the association scheme. But
eachS: is idempotent, so Lemma 2.7 shows that e§¢ls a sum of zero or more

stratum projectors. IF # G thenWe | Wi, SOS andSs cannot contain any stra-

tum projectors in common. Thus no linear combinatiod &f : F € ¥ } projects
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onto any non-zero proper subspaceNgf, for anyG in F. But Equations (4.6)
and (4.7) show thafl = span{S- : F € 7}, so the non-zero spac¥g must be
precisely the strata.

Taking the trace of both sides of Equation (4.7) gives

de = 3 W(F,G)ne, (4.8)
GeF

becausettc =dimVg=ng. =

The character table of the association scheme follows immediately from the
work done so far. From Equations (4.4) and (4.6) and Proposition 4.1 we have

A = gul(ﬁ G>RG
- gp’(F, G)kePs
- gp’(F, G)kGZZ(G,H)&,

SO
C = W diag K)Z. (4.9)

Inversion then gives
D =C ! = pdiagk) 1. (4.10)

We can check that this agrees with the results found in Chapter 2. From Equa-
tions (4.5) and (4.8) we obtain the (symmetric) diagonal matrices of valencies and
dimensions as

diaga) = | diagk) = diagk)ut
and
diag(d) = pdiag(n).

Applying Corollary 2.13 to Equation (4.9) gives

D — |—§1)|diag(d)C’diag(a)_1
B ﬁudiag(n)&’diag(k)uu1diag(k>1
1 /
= @pdlag(n)z

= pdiagk) T

becauser ke = |Q| for all F.
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Although the existence of the dbius function is useful for proving general
results, such as Theorems 4.8 and 4.9, it is rarely used in explicit calculations.
The adjacency matrices and their valencies can be calculated recursively, using
Equations (4.4) and (4.5), starting at the bottom of the Hasse diagram. Likewise,
the stratum projectors and the dimensions of the strata are calculated recursively,
using Equations (4.7) and (4.8), starting at the top of the Hasse diagram.

Example 4.1 revisited Write R, C and B respectively forRiows, Reolumns @and

Rrectangles We haveke = 1, krows = 4, Keolumns= 2, Krectangles= 8 andky = 24.
Working from the bottom of the Hasse diagram in Figure 4.1, we obtain

AE = 1 ag = 1
Arows = R-I Arows = 3
Acolumns = C—I Acolumns = 1
Arectanges = B—R—-C+I Arectangles = 3
Ay = J-B ay = 16.

To obtain the strata, we start at the top of the Hasse diagram. For the dimensions
we use the fact thaly = 1, Nrectangles= 3, Ncolumns= 12, Nrows = 6 andng = 24:

1
= —_— = 1
S 24J 4
S = }B— iJ (o} = 2
ectangles — 8 24 ectangles —
S = 1C 1B (08 = 9
olumns = 2 8 olumns =
1 1
Srows - ZR_ éB d(ows = 3
1 1 1
S = I—ZR—§C+§B de = 0

The character table is now either calculated directly by expressing each adja-
cency matrix above in terms of the stratum projectors, or by using Equation (4.9).
If we keep the elements of in the order

E rows columns rectanglesU,

we obtain
1 0 0 00O 1 000 O 11111
-1 1 0 00 0400 O 01011
C = -1 0 1 00 0020 O 00111
1 -1 -1 10 0008 O 00011
0O 0 O0-11 O 000 24 0 00O0O1
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Notice that the entries 1 come in tfiest row, while the valencies come in thest

column.

Likewise we calculate
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O 0 1 -
O 0 O
-1 -1 1

1 0 -1

0O 1 -1

O 0 1 -
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Here the dimensions come in the first column, while the 1s come in the last

rnw. m

This example displays a difficulty which was alluded to at the end of Sec-
tion 2.2. In the association scheme of an orthogonal block structure, the asso-
ciate classes and the strata are both naturally labellefl,lso we normally have
K =‘E = ¥F. However, the diagonal associate class, usually calles hereCg,
while the all-1s stratum, usually call®), is heré\{,. In other words, the special
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associate class and the special stratum correspond to the two different trivial par-
titions. That is why the special entries in the matri€eandD are not all in the
first row and column.

On the other hand, the foregoing example also demonstrates an advantage that
orthogonal block structures have over association schemes in general. There are
explicit, straightforward formulae for the strata and character table, so there is no
need to resort to any of the techniques in Section 2.4.

If any of the (r is empty thenX is a proper subset gf . Theorem 2.6 shows
that|E| = | K|, SO is also a proper subset ¢f; in fact, the number oF such
that Wk = 0 is the same as the number Bfsuch thatG: = 0. However, the
partitions which give zero subspaces are not usually the same as those which give
empty subsets d@ x Q.

Example 4.2 revisited Although this association scheme is defined by a single
Latin square, it imot of the Latin square type (13,n) described in Example 1.6:

the former first associates have been separated into those in the same row, those
in the same column and those in the same letter. If we \Rjit@ andL for Riows,
Reolumns@NdRetters We obtain

AE = I aE e 1
Arows = R-I Arows = n-1
Acolumns = C-I Acolumns = n-1
Aetters = L-I Aletters = n—-1
AU = J-R-C—-L+2 ay — (n_l)(n_Z)
and
1
1 1
Sows = HR_ ﬁ\] Crows = n—1
1 1
Solumns = HC - ?J Ceolumns = n-1
1 1
Setters = ﬁL - ?J Jetters = n-1
1 1 1 2
= | --R—--C—-L+J d = (n=1)(n—-2).
= nn n e . (n=1)(n-2)

f n=2thengy =0andWe =0. =

More generally, if we have — 2 mutually orthogonah x n Latin squares then
we can create an orthogonal block structure withon-trivial partitions of a set
of sizen? into n classes of siza. It is also an orthogonal array. ¢f= n+ 1 then
G = 0andWe = 0.



