Chapter 4

Families of Partitions

4.1 A partial order on partitions

We have seen that the group-divisible association scheme is defined by a partition
of Q into blocks of equal size. A patrticularly tidy basis for the Bose-Mesner
algebraq in this case i1, B, J}, whereB is the adjacency matrix for the relation
“isin the same block as”. The main object of this chapter is to give a single general
construction for association schemes defined by families of partitiof@s of

Let F be a partition oK into ng subsets, which | shall cafi-classes. (I use
the letter because statisticians call partitidiastors) Define the relation matrix
Re in R x Q by

1 if a andf are in the samg&-class

0 otherwise, (4.1)

Re(a.B) = {

just asB was defined in Section 3.1. Then, as in Section 3.4, define the sub-
spacé/r of R®? by

VE = {v e R?: v(a) = v(B) whenever andp are in the samé-class} :

Then dinVg = ng. Let P= be the orthogonal projector onte. Then(P:v)(a) is
equal to the average of the valugg) for B in the samd--class asx.

Definition The partitionF is uniformif all classes oF have the same size.

(Unfortunately, there is no consensus about what to call such a partition. The
wordsuniform, regular, balancedandproperare all in use.)

Proposition 4.1 If F is uniform with classes of size khen B = k;lRF.
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So much for a single partition. Now we consider what happens when we have
two partitions.

If F andG are both partitions of2, write F < G if every F-class is contained
in aG-class; writeF < Gif F < GandF # G. We may pronounce < Gas ‘F is
finer thanG” or “ G is coarser thai”. (Statisticians often sayF is nested irG”.)

Example 4.1 In the association schem¢ (2 x 4) the setQ consists of 24 ele-
ments, divided into three rectangles as follows.

The set is partitioned in three ways—into rows, columns and rectangles. Identi-
fying the names of the partitions with the names of their classes, we have<rows
rectangles and columnsrectangles. =

Lemma4.2 If F < Gthen\§ < k.

Proof Any function which is constant o-classes must be constant én
classes too if each-class is contained in G-class. =

There are two special, but trivial, partitions on every set with more than one
element. ThainiversalpartitionU consists of a single class containing the whole
of Q (theuniversg. At the other extreme, thequalitypartitionE has as its classes
all the singleton subsets 6F; in other wordsga andf3 are in the sam&-class if
and only ifa = 3. Note thatE < F < U for all partitionsF.

The relation< satisfies:

() (reflexivity) for every partitionF, F < F;
(i) (anti-symmetry) if F < G andG < F thenF = G;
(ii) (transitivity ) if F < GandG < H thenF < H.

This means thak is a partial order. Partial orders are often shown éfasse
diagrams there is a dot for each element (partition in this casel; & G then

F is drawn belowG and is joined tdG by a line or sequence of lines, all going
generally upwards.

Example 4.1 revisited The Hasse diagram for this example is in Figure 4.1
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U
U
rectangles
letters columns
rows columns
E
E
Figure 4.1: Hasse diagram for Ex- Figure 4.2: Hasse diagram for Ex-
ample 4.1 ample 4.2

Example 4.2 The set ofn? cells in an x n Latin square has three non-trivial
partitions—into rows, columns and letters. The Hasse diagram in shown in Fig-
ure4.2. =m

A set with a partial order on it is often calledoaset Every poset has a zeta
function and a Mbius function, which | shall now define for our particular partial
order.

Let F be any set of partitions d@. Definel in R7 *7 by

1 ifFG
0 otherwise.

{(F.G) = {

In fact, the partial ordexk is often considered to be the sub$éf,G) : F < G}
of F x F. From this viewpoint{ is just the adjacency matrix ef.

The elements off can be written in an order such thfatcomes beforés if
F < G. Then( is an upper triangular matrix with 1s on the diagonal, so it has an
inverse matriqd which is also upper triangular with integer entries and 1s on the
diagonal. The matrixiis called theMobiusfunction of the poset¥, <).

Example 4.1 revisited Here

E rows columns rectangledJ

E 1 1 1 1 1

rows 0 1 0 1 1

( = columns | O O 1 1 1
rectangles| 0 O 0 1 1

U 0 O 0 0 1
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o)
E rows columns rectangled)
E 1 -1 -1 1 0
rows 0 1 0 -1 0

H = columns | O O 1 -1 0 [
rectangles| 0 O 0 1 -1
U 0O O 0 0 1

Example 4.2 revisited For the Latin square,

E rows columns lettersU

E 1 1 1 1 1
rows 0 1 0 0 1
( = columns| 0O O 1 0 1
letters 0O O 0 1 1
U 0O O 0 0 1
and so
E rows columns lettersU
E 1 -1 -1 -1 2
rows 0 1 0 0o -1
M = columns|{ O O 1 0o -1 [
letters 0O O 0 1 -1
U 0O O 0 0 1

If F and G are partitions, leF A G be the partition whose classes are the
non-empty intersections &f-classes wittG-classes. Then

() FAGxgFandFAG<G, and
(i) if H<F andH < GthenH xFAG,

soF A G is theinfimum(or greatest lower boundof F andG. Dually, thesupre-
mum(or least upper boundrF v G of F andG is defined by

() FxFvGandG<F VG, and
(i) if F<xHandG < H thenFvG<H.

To construct Vv G, draw a coloured graph whose vertex se®isThere is a red
edge between andf if a andf3 are in the same&-class, and a blue edgeafand

[ are in the sam6&-class. Then the classesfof/ G are the connected components
of the red-and-blue graph.
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Example 4.1 revisited In the example with rectangular arrays, we have rows
columns= E and rowsv columns= rectangles.

Example 4.2 revisited In the Latin square, the supremum of any two of the non-
trivial partitions isU and the infimum of any two IE.

Of course, ifF < GthenF AG=F andF v G = G. Moreover, just as the
empty sum is 0 and the empty product is 1, we make the convention that the
empty infimum isdJ and the empty supremumks

Lemma 4.3 If F and G are patrtitions of2, then \¢ N"Vg = Vryc.

Proof Letvbe a vector iR, Then

VEVENVs <= Vis constant on each component of the blue
graph and/is constant on each component of
the red graph

Vv is constant on each component of the red-
and-blue graph

VEVEyG. =

!

!

4.2 Orthogonal partitions

Definition Let F andG be partitions ofQ. ThenF is orthogonalto G if Vg is
geometrically orthogonal tdg, that is, ifPrPg = PgPr.

Note that this implies thaf is orthogonal taG if F < G, becausd-Pg =
PsPe = Ps in that case.

Lemma 4.4 If F is orthogonal to G, then
() PePs = Prye;
(i) VE N (Veve)t is orthogonal to .

Proof These both follow immediately from Lemma 2.2, using the fact Yrat
Ve=VFvG. =

Corollary 4.5 Partitions F and G are orthogonal to each other if and only if,

(i) within each class of ¥ G, each F-class meets every G-class, and
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(ii) for each elementv of Q,

|[F-class containingo]  |F AG-class containingo|
|F v G-class containings]  |G-class containing|

Corollary 4.6 If F is orthogonal to G and if F, G and F G are all uniform then
F A G is also uniform and

ke nGKrvG = KrKg.

Example 4.1 revisited Here rows are orthogonal to columns even though no row
meets every column. =

Example 4.2 revisited As in Example 1.6, writ®, C andL for Rows, Reolumnsand
Retters Proposition 4.1 shows th&qws = N"'R, Peolumns= N"2C, Pletters= N 1L
andRy =n~2J. We saw in Example 1.6 th®C=CR=RL=LR=CL=LR=J.
Thus the partitions into rows, columns and letters are pairwise orthogomal.

Theorem 4.7 Let ¥ be a set of pairwise orthogonal partitions & which is
closed under. For F in F, put

i
We =VEN V .

Then

(i) the spaces Wand W are orthogonal to each other whenever F and G are
different partitions in¥;

(i) foreachF in¥F,

Ve = P We.
G=F

Proof (i) If F # GthenF v G must be different from at least one BfandG.
Suppose thadf VG #F. ThenF VG~ F andFVvG e F so

W < VENVE G,

while W < V. Lemma 4.4 (i) shows thatr ﬂVFLvG is orthogonal td/s,
becausd- is orthogonal tdG. HenceW is orthogonal to\G.
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(i) Since the spacess, for G = F, are pairwise orthogonal, their vector space
sum is direct, so it suffices to prove that

Ve = ZFWG (4.2)
Gr

We do this by induction. If there is @ such thatG > F thenWg = Vr and
Equation (4.2) holds. The definition @# shows that

VE :\NF—I—HZFVH.
-

If the inductive hypothesis is true for everywith H - F then

PAEPS S
= ~F Gi=

If G=H >~ FthenG>~F,and ifG>~ F thenG =G> F so

23N g
~F G= G-

VE =WE + zFWG: ZFWG. [ |
G- G-

Thus



