3.7 Cyclic designs

Let $\Theta = \mathbb{Z}_t$. For $\Phi \subseteq \Theta$, a *translate* of Φ is a set of the form

$$\Phi + \theta = \{\phi + \theta : \phi \in \Phi\}$$

for some θ in Θ . Of course, Φ is a translate of itself.

It is possible to have $\Phi + \theta_1 = \Phi + \theta_2$ even when $\theta_1 \neq \theta_2$. Then $\Phi + (\theta_1 - \theta_2) = \Phi$. Let *l* be the number of distinct translates of Φ : we shall abuse grouptheoretic terminology slightly and refer to *l* as the *index* of Φ . Then $\Phi + (l \mod t) = \Phi$. Moreover, *l* is the smallest positive integer with this property, and *l* divides *t* (for if not, the remainder on dividing *t* by *l* is a smaller positive number *l'* with $\Phi + (l' \mod t) = \Phi$).

Definition An incomplete-block design with treatment set \mathbb{Z}_t is a *thin cyclic design* if there is some subset Φ of \mathbb{Z}_t such that the blocks are all the distinct translates of Φ : the design is said to be *generated* by Φ . An incomplete-block design is a *cyclic* design if its blocks can be partitioned into sets of blocks such that each set is a thin cyclic design.

Example 3.13 Let $\Phi = \{0, 1, 3\} \subset \mathbb{Z}_8$. This has index 8, so it generates the following thin cyclic design.

$$\{0,1,3\},\{1,2,4\},\{2,3,5\},\{3,4,6\},\{4,5,7\},\{5,6,0\},\{6,7,1\},\{7,0,2\}.$$

Example 3.14 Here is a cyclic design for \mathbb{Z}_6 which is not thin.

$$\{0,1,4\},\{1,2,5\},\{2,3,0\},\{3,4,1\},\{4,5,2\},\{5,0,3\},\{0,2,4\},\{1,3,5\}.$$

The index of $\{0, 1, 4\}$ is 6 and the index of $\{0, 2, 4\}$ is 2.

Theorem 3.13 Let $\Phi \subset \mathbb{Z}_t$ and let l be the index of Φ . For θ in \mathbb{Z}_t , let

$$m_{\theta}(\Phi) = |\{(\phi_1, \phi_2) \in \Phi \times \Phi : \phi_1 - \phi_2 = \theta\}|,$$

so that

$$\chi_\Phi\chi_{-\Phi} = \sum_{ heta\in\Theta} m_ heta(\Phi)\chi_ heta.$$

Then, in the thin cyclic design generated by Φ ,

$$\Lambda(0,\theta) = m_{\theta}(\Phi) \times \frac{l}{t}$$

and

$$\Lambda(\eta,\zeta) = \Lambda(0,\zeta-\eta). \tag{3.7}$$

74

Proof Treatments 0 and θ concur in the translate $\Phi + \psi$ if and only if there are ϕ_1 , ϕ_2 in Φ such that $\phi_1 + \psi = \theta$ and $\phi_2 + \psi = 0$, that is $\psi = -\phi_2$ and $\theta = \phi_1 - \phi_2$. If l = t then $\Lambda(0, \theta) = m_{\theta}(\Phi)$. In general, the family of sets $\Phi, \Phi + 1, \dots, \Phi + t - 1$ consists of t/l copies of the *l* distinct translates $\Phi, \Phi + 1, \dots, \Phi + l - 1$, so the concurrence in the thin design is $(l/t)m_{\theta}(\Phi)$.

Moreover, treatments 0 and θ concur in $\Phi + \psi$ if and only if treatments η and $\eta + \theta$ concur in $\Phi + \psi + \eta$, so $\Lambda(0, \theta) = \Lambda(\eta, \eta + \theta)$.

Corollary 3.14 Every cyclic design is partially balanced with respect to the cyclic association scheme on \mathbb{Z}_t defined by the blueprint {0}, {±1}, {±2}, (It may be partially balanced with respect to a cyclic association scheme with fewer associate classes.)

Proof Since Equation (3.7) holds in each thin component of the design, it holds overall, and

$$\Lambda = \sum_{\theta \in \Theta} \Lambda(0, \theta) M_{\theta},$$

where

$$M_{\theta}(\eta, \zeta) = \begin{cases} 1 & \text{if } \zeta - \eta = \theta \\ 0 & \text{otherwise,} \end{cases}$$

as in Section 1.4.5. But Λ is symmetric, so $\Lambda(0, -\theta) = \Lambda(-\theta, 0) = \Lambda(0, \theta)$, by Equation (3.7). The adjacency matrices for the cyclic association scheme defined by the blueprint $\{0\}, \{\pm 1\}, \{\pm 2\} \dots$ are $(M_{\theta} + M_{-\theta})$ if $2\theta \neq 0$ and M_{θ} if $2\theta = 0$, so Λ is a linear combination of the adjacency matrices, and so the design is partially balanced with respect to this association scheme.

Suppose that $\Delta_0, \Delta_1, \ldots, \Delta_s$ is a blueprint for \mathbb{Z}_t such that $\Lambda(0, \theta)$ is constant λ_i for θ in Δ_i . Putting $A_i = \sum_{\theta \in \Delta_i} M_{\theta}$ gives $\Lambda = \sum_i \lambda_i A_i$, and so the design is partially balanced with respect to the cyclic association scheme defined by the blueprint.

Now write λ_{θ} for $\Lambda(0, \theta)$.

Technique 3.8 To calculate the concurrences in the thin design generated by Φ , form the *table of differences* for Φ . Try to find the coarsest blueprint such that λ_{θ} is constant on each set in the partition.

Example 3.13 revisited In \mathbb{Z}_8 , the block $\{0,1,3\}$ gives the following table of differences.

	0	1	3
0	0	1	3
1	7	0	2
3	5	6	0

76

Therefore $\lambda_0 = 3$, $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_5 = \lambda_6 = \lambda_7 = 1$ and $\lambda_4 = 0$. Hence the design is partially balanced for the association scheme defined by the blueprint $\{0\}$, $\{4\}$, $\{1,2,3,5,6,7\}$ (so this design is group divisible with groups $0,4 \parallel 1,5 \parallel,2,6 \parallel 3,7$).

Definition A subset Φ of \mathbb{Z}_t is a *perfect difference set* for \mathbb{Z}_t if there are integers r, λ such that

$$\chi_{\Phi}\chi_{-\Phi}=r\chi_0+\lambda(\chi_{\mathbb{Z}_t}-\chi_0);$$

in other words, $m_{\theta}(\Phi) = \lambda$ for all θ with $\theta \neq 0$.

Proposition 3.15 *The thin cyclic design generated by* Φ *is balanced if and only if* Φ *is a perfect difference set.*

Example 3.5 revisited The subset $\{1, 2, 4\}$ is a perfect difference set for \mathbb{Z}_7 .

	1	2	4
1	0	1	3
2	6	0	2
4	4	5	0

Its table of differences contains every non-zero element of \mathbb{Z}_7 exactly once.

Theorem 3.16 The canonical efficiency factors of a cyclic design are

$$1 - \frac{1}{rk} \sum_{\theta \in \mathbb{Z}_t} \lambda_{\theta} \eta^{\theta}$$

for complex t-th roots of unity η with $\eta \neq 1$.

Proof Use Theorems 3.12 and 2.18. ■

Technique 3.9 Let $\zeta = \exp\left(\frac{2\pi i}{t}\right)$. Then η is a complex *t*-th root of unity if there is an integer *m* such that $\eta = \zeta^m$. To calculate canonical efficiency factors of cyclic designs numerically, replace $\eta^{\theta} + \eta^{-\theta}$ by $2\cos\left(\frac{2\pi\theta m}{t}\right)$. To calculate the harmonic mean efficiency factor *A* as an exact rational number, leave everything in powers of ζ .

Example 3.15 Consider the thin cyclic design generated by $\{0, 1, 3, 7\}$ in \mathbb{Z}_9 .

	0	1	3	7
0	0	1	3	7
1	8	0	2	6
3	6	7	0	4
7	2	3	5	0

3.7. CYCLIC DESIGNS

Thus the eigenvalues of Λ are

$$4 + (\eta + \eta^{-1}) + 2(\eta^2 + \eta^{-2}) + 2(\eta^3 + \eta^{-3}) + (\eta + \eta^{-4})$$

where $\eta^9 = 1$. If $\eta^3 = 1$ and $\eta \neq 1$ then $\eta + \eta^{-1} = -1$ (the cube roots of unity sum to zero) so the eigenvalue is

$$4 - 1 - 2 + 4 - 1 = 4;$$

otherwise it is

$$4 + \eta^2 + \eta^{-2} - 2 = 2 + \eta^2 + \eta^{-2}$$

because the primitive ninth roots of unity sum to zero (because all the ninth roots do). Let ζ be a fixed primitive ninth root of unity, and put $x = \zeta + \zeta^{-1}$, $y = \zeta^2 + \zeta^{-2}$ and $z = \zeta^4 + \zeta^{-4}$. Then the canonical efficiency factors are

$$\frac{3}{4}$$
, $\frac{14-x}{16}$, $\frac{14-y}{16}$, $\frac{14-z}{16}$,

all with multiplicity 2.

Substituting $x = 2\cos 40^\circ$, $y = 2\cos 80^\circ$, $z = 2\cos 160^\circ$ gives

0.7500, 0.7792, 0.8533 and 0.9925

to 4 decimal places, and A = 0.8340.

To do the exact calculation, we note first that x + y + z = 0. Then

$$xy = (\zeta + \zeta^{-1})(\zeta^{2} + \zeta^{-2})$$

= $\zeta + \zeta^{3} + \zeta^{-3} + \zeta^{-1}$
= $x - 1$,

and similarly yz = y - 1 and zx = z - 1. Therefore xy + yz + zx = x + y + z - 3 = -3and xyz = (x - 1)z = xz - z = z - 1 - z = -1.

Now

$$\begin{aligned} \frac{1}{14-x} + \frac{1}{14-y} + \frac{1}{14-x} \\ &= \frac{(14-x)(14-y) + (14-x)(14-z) + (14-y)(14-z)}{(14-x)(14-y)(14-z)} \\ &= \frac{3 \cdot 14^2 - 28(x+y+z) + (xy+yz+zx)}{14^3 - 14^2(x+y+z) + 14(xy+yz+zx) - xyz} \\ &= \frac{3 \cdot 14^2 - 3}{14^3 - 3 \cdot 14 + 1} = \frac{195}{901}, \end{aligned}$$

so

$$4A^{-1} = \frac{4}{3} + \frac{16 \times 195}{901}$$
so

$$A^{-1} = \frac{1}{3} + \frac{4 \times 195}{901} = \frac{3241}{2703}$$
and

$$A = \frac{2703}{3241}.$$