QUEEN MARY AND WESTFIELD COLLEGE

MAS 417

Association Schemes and Partially Balanced Designs

Assignment 5

For handing in on 3 April 2001

1 Consider the following incomplete-block designs for eight treatments in six blocks of size four.

- (a) The treatments are the vertices of the cube. The blocks are the faces of the cube.
- (b) The cyclic design generated by $\{0, 2, 4, 6\}$ and $\{0, 1, 4, 5\}$ modulo 8.

Show that each design is partially balanced. Find its canonical efficiency factors, and the variances of all simple contrasts. Which design do you think is better?

2 Consider the following incomplete-block designs for fifteen treatments in sixty blocks of size three.

- (a) The treatments are all 2-subsets of a 6-set. The blocks are all triples like $\{\{1,2\},\{1,3\},\{2,3\}\}$, each occurring 3 times.
- (b) The treatments are all 2-subsets of a 6-set. The blocks are all triples like $\{\{1,2\},\{3,4\},\{5,6\}\}$, each occurring 4 times.
- (c) The cyclic design generated by $\{0, 5, 13\}$, $\{0, 1, 5\}$, $\{0, 3, 14\}$ and $\{0, 6, 8\}$ modulo 15.

Show that each design is partially balanced. Find its canonical efficiency factors, and the variances of all simple contrasts. Which design do you think is best?

3 Draw the Hasse diagram for each of the following sets \mathcal{F} of partitions. Find the zeta function and Möbius function in each case. For the association scheme defined by each one, write down the associate classes in words.

- (a) The set consists of bk elements, grouped into b blocks of size k, and $\mathcal{F} = \{E, \text{blocks}, U\}$.
- (b) The set is an $m \times n$ rectangle, and $\mathcal{F} = \{E, \text{rows}, \text{columns}, U\}.$

Figure 1: Three herds of 15 cows with 2 ears each

- (c) In an experiment on types of ear-tag, the experimental units ("plots") are cows' ears. The experiment uses both ears from each of 15 cows from each of 3 herds. See Figure 1. The set consists of the 90 ears, and $\mathcal{F} = \{E, \text{cows}, \text{herds}, U\}$.
- (d) An orthogonal block structure of your own choice, different from those above.

4 The web page for this course is at http://www.maths.qmw.ac.uk/~rab/MAS417/ and includes a colour picture of the cube association scheme. Choose another non-trivial association scheme with n points, where $n \leq 16$. Write the html code to show it as a $n \times n$ square with colours to indicate the associate classes. Email this to r.a.bailey@qmw.ac.uk. The best entries will be put on the web page.