QUEEN MARY AND WESTFIELD COLLEGE

MAS 417 Association Schemes and Partially Balanced Designs

Assignment 2

For handing in on 20 February 2001

1 Find the parameters of the Johnson scheme J(7,3).

2 Find the parameters of the Hamming scheme H(5,4).

3 Verify that C_1 in the Johnson scheme defines a distance-regular graph.

4 Draw a connected regular graph that is not distance-regular.

5 For Z_6 , write down the circulant matrices M_1 and M_3 .

6 Verify that, for \mathbf{Z}_n , $M_{\alpha}M_{\beta} = M_{\alpha+\beta}$ and $M_{\alpha}\chi_{\omega} = \chi_{\omega-\alpha}$.

7 Verify that the sets $\{0\}$, $\{1, 4, -4, -1\}$, $\{2, 7, -7, -2\}$, $\{3, -3\}$, $\{5, -5\}$ and $\{6, -6\}$ form a blueprint for z_{15} .

8 Write down as many association schemes as you can think of which have 15 elements. Give enough detail about them to show that they are all distinct.

9 Let \mathcal{A} be the Bose-Mesner algebra of the group divisible association scheme GD(b,k) on a set Ω of size *bk*. Let *G* be the adjacency matrix for the relation "is in the same group as" on Ω .

- (a) Show that $\{I, G, J\}$ is a basis for \mathcal{A} .
- (b) Write down the multiplication table for $\{I, G, J\}$.
- (c) Find all the idempotents in \mathcal{A} , expressing them in terms of this basis.