QUEEN MARY AND WESTFIELD COLLEGE

MAS 417

Association Schemes and Partially Balanced Designs

Assignment 1 For handing in on 6 February 2001

1 Explain why the parameters of an association scheme satisfy

(a)
$$p_{0j}^j = 1;$$

(b) $p_{ij}^k = p_{ji}^k$.

2 Verify that a graph is strongly regular if and only if it is neither complete nor null and the sets of edges and non-edges form an association scheme on the set of vertices. Relate the parameters of the association scheme to those of the strongly regular graph.

3 Draw a finite graph that is regular but not strongly regular.

4 Let A and B be matrices in $F^{\Gamma \times \Delta}$ and $F^{\Delta \times \Phi}$ respectively, where F is a field and Γ , Δ and Φ are finite sets. Prove that (AB)' = B'A'.

5 Let C_i and C_j be associate classes in an assocation scheme on Ω . Suppose that $(\alpha, \beta) \in C_i$ and $(\beta, \gamma) \in C_j$. Prove that there is a point δ such that $(\alpha, \delta) \in C_j$ and $(\delta, \gamma) \in C_i$.

6 Consider an association scheme on a set Ω of size 6.

- (a) Prove that at most one of the classes can have valency 1.
- (b) Write down four distinct association schemes on Ω .
- (c) Prove that there are exactly four different association schemes on Ω , in the sense that any others are obtained from one of these four by relabelling.

7 Let A be a symmetric matrix with zero diagonal whose entries are 0 and 1. Suppose that there are integers x, y and z such that $A^2 = xI + yA + zJ$. Show that A, I and J - A - I are the adjacency matrices of an association scheme, and find its parameters. 8 Two Latin squares of the same size are said to be *orthogonal to each other* if each letter of one square occurs exactly once in the same position as each letter of the second square. A collection of Latin squares of the same size is said to be *mutually orthogonal* if every pair of squares in it is orthogonal.

Suppose that $\Lambda_1, \ldots, \Lambda_r$ is a set of r mutually orthogonal Latin squares of size n. Let Ω be the set of n^2 cells in the array. For distinct α, β in Ω , let α and β be first associates if α and β are in the same row or are in the same column or have the same letter in any of $\Lambda_1, \ldots, \Lambda_r$; otherwise α and β are second associates.

- (a) Find the size of $C_1(\alpha)$. Hence find an upper bound on r.
- (b) Show that these definitions of C_1 and C_2 make an association scheme on Ω . It is called the *Latin-square type* association scheme L(r+2, n). When does it have only one associate class?