UNIVERSITY OF LONDON

QUEEN MARY AND WESTFIELD COLLEGE

M. Sc. Examination 1998

A 100 Association Schemes and Partially Balanced Designs

Duration: 3 hours

Date and time:

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best FOUR questions answered will be counted.

Question 1 Define a *distance-regular graph*.

Prove that the distance classes in a distance-regular graph form an association scheme on the set of vertices.

Do all association schemes arise in this way from distance-regular graphs? Justify your answer.

Give two examples of distance-regular graphs with diameter 4.

Question 2 Define a *perfect difference set* for Z_n .

In Z_{13} , let $\Phi = \{0, 2, 8\}$. Find the concurrence matrix for the cyclic design generated by Φ . Hence find its canonical efficiency factors and the average variance of simple contrasts when the variance of each response is σ^2 .

Find a subset Ψ of Z_{13} such that the cyclic design generated by Φ and Ψ is balanced.

Question 3 Let Q_1 be an association scheme on a set Ω_1 of size n_1 with s_1 non-diagonal associate classes C_1, \ldots, C_{s_1} , and let Q_2 be an association scheme on a set Ω_2 of size n_2 with s_2 non-diagonal associate classes $\mathcal{D}_1, \ldots, \mathcal{D}_{s_2}$. Define the *wreath product* Q_1/Q_2 .

Prove that Q_1/Q_2 is an association scheme, and find its characters in terms of those of Q_1 and Q_2 .

Describe the association scheme $5/(2 \times 4)$ in words or pictures.

Question 4 Describe the triangular association scheme T(n) and prove that it *is* an association scheme.

Find the stratum projectors of T(6) in terms of the adjacency matrices.

© QMW, University of London 1998

TURN OVER

Question 5 For each of the sets of values of n, a, p and q below, either describe a strongly regular graph on n vertices with valency a such that every edge is contained in exactly p triangles and every non-edge is contained in exactly q paths of length 2, or prove that no such strongly regular graph exists.

(a) n = 9, a = 4, p = 1, q = 2.

(b)
$$n = 20, a = 8, p = 1, q = 4.$$

(c)
$$n = 25, a = 6, p = 2, q = 1.$$

(d) n = 36, a = 20, p = 10, q = 12.

Question 6 Given an incomplete-block design for treatment set Θ , define what it means for the design to be *partially balanced*.

Prove that, for a partially balanced incomplete-block design, the variance of the simple contrast for the difference between treatments θ and η is a function of the associate class containing (θ, η) .

Show that the following design for $\Theta = \{a, b, c, d, e, f, g, h, i, j, k, l\}$ is partially balanced, and find the variances of simple contrasts when the variance of each response is σ^2 .

 $\{a,e,i\}, \{b,f,j\}, \{c,g,k\}, \{d,h,l\}, \{a,h,k\}, \{b,g,l\}, \{c,f,i\}, \{d,e,j\}, \{a,g,j\}, \{b,h,i\}, \{c,e,l\}, \{d,f,k\}, \{a,f,l\}, \{b,e,k\}, \{c,h,j\}, \{d,g,i\}.$

Question 7 Define a *difference partition* for Z_n .

Show that $\{0\}$, $\{5,-5\}$, $\{1,4,6,-6,-4,-1\}$ and $\{2,3,7,-7,-3,-2\}$ form a difference partition for Z_{15} .

Find the character table of the association scheme defined by this difference partition.