QUEEN MARY,

UNIVERSITY OF LONDON

B. Sc. Examination 2007

MAS 305 Algebraic Structures II

Duration: 2 hours

Date and time: 22 May 2007, 1000h

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best FOUR questions answered will be counted.

Calculators are NOT permitted in this examination. The unauthorized use of a calculator constitutes an examination offence.

Do not start reading the question paper until instructed to do so.

The question paper must not be removed from the examination room.

- **Question 1** (a) Let G be a finite group, and let p be a prime number. State what it means for G to be a p-group. Define a $Sylow\ p$ -subgroup of G. State what it means for G to be simple.
- (b) State all the parts of Sylow's Theorems (it does not matter how the parts are numbered).
- (c) Prove that no group of order 80 is simple.
- (d) Describe the Sylow 2-subgroups of the dihedral group D_{24} of all symmetries of the regular polygon with 12 sides.

Question 2 (a) State what it means for a finite group G to be *soluble*.

- (b) Show that the symmetric group S_4 is soluble.
- (c) Prove that if H is a subgroup of S_4 and |H| = 12 then H is the alternating group A_4 .
- (d) Let G be a group of order 12, and P a Sylow 3-subgroup of G. Prove that if P is not normal in G then $G \cong A_4$.
- **Question 3** (a) Let π be an action of a group G on a set Ω , and let α and β be elements of Ω . Define the *stabilizer* G_{α} of α in G. Prove that if $\alpha \pi_g = \beta$ for some g in G then $G_{\alpha}^g = G_{\beta}$.
 - (b) Let Ω be \mathbb{Z}_7 , the set of integers modulo 7. Let G consist of all permutations of Ω of the form

$$x \mapsto ax + c \mod 7$$
,

where a is equal to 1, 2 or 4 in \mathbb{Z}_7 and $c \in \mathbb{Z}_7$. You may assume that G is a subgroup of S_7 .

- (i) Find the stabilizer G_0 of 0 in G.
- (ii) Hence or otherwise, find the conjugacy classes of G: this means giving one element of each conjugacy class explicitly and finding out how many elements are conjugate to it. For one element g in each conjugacy class, find its centralizer C(g) in G.

Question 4 Let (G, +) be an Abelian group with (additive) identity 0_G . Define the binary operation * on G by $g * h = 0_G$ for all g, h in G.

- (a) Prove that (G, +, *) is a commutative ring. From now on, we call this ring R.
- (b) Does R have an identity?
- (c) Describe the ideals of R.
- (d) For each of the following rings, state whether or not it is a zero ring, and justify your answer: (i) $M_2(R)$, (ii) $R \oplus R$, (iii) R[x].
- (e) Identify the additive group of (i) $M_2(R)$, (ii) $R \oplus R$.
- (f) Prove that if |R| = 64 then R has an ideal of order 16.

Question 5 Let R be a principal ideal domain.

- (a) Let u, x, y and h be elements of R. Explain what each of the following statements means:
 - (i) u is a unit in R;
 - (ii) h is a highest common factor of x and y.
- (b) Let A be a 2×2 matrix with entries in R. Prove that A is invertible if and only if det(A) is a unit in R.
- (c) Let G be the group of all 2×2 invertible matrices with entries in R, and let

$$\Omega = \{(x, y) : x \in R, \ y \in R\} = R^2.$$

For g in G, define $\pi_g : \Omega \to \Omega$ by $\alpha \pi_g = \alpha g$ for α in Ω ; that is, if $\alpha = (x, y)$ and $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $\alpha \pi_g = (x, y) \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (ax + cy, bx + dy)$.

- (i) Show that π is an action of G on Ω .
- (ii) Show that (x, y) is in the same orbit as $(1_R, 0_R)$ if and only if 1_R is a highest common factor of x and y.

Question 6 Let R be a ring with identity 1.

- (a) What is meant by an ascending chain of ideals of R? What does it mean to say that R is Noetherian?
- (b) In the matrix ring $M_2(R)$, let E_{ij} be the matrix whose (i, j)-entry is 1, all other entries being 0. Let A be the matrix whose (i, j)-entry is a_{ij} . Here $1 \le i, j \le 2$. Prove that $E_{ij}AE_{kl} = a_{jk}E_{il}$.
- (c) Let J be a non-zero ideal of $M_2(R)$. Prove that there is some ideal I of R such that $J = M_2(I)$.
- (d) Hence or otherwise, prove that if R is Noetherian then $M_2(R)$ is Noetherian.
- (e) How does the proof that $M_2(R)$ is Noetherian break down if R does not contain an identity?

Question 7 (a) Let A and I be subsets of a ring R. What do each of the following statements mean?

- (i) I is an *ideal* of R;
- (ii) I is the ideal $\langle A \rangle$ generated by A?
- (iii) I is a finitely generated ideal.
- (b) Let R be a ring.
 - (i) What is meant by a maximal element of a non-empty set of ideals of R?
 - (ii) Prove that if every non-empty set of ideals of R has a maximal element then every ideal of R is finitely generated.
- (c) Prove that every non-empty set of ideals of the ring $\mathbb{Z}[x]$ has a maximal element, citing any theorems that you use.