
MAS 305 Algebraic Structures II

Notes 9 Autumn 2006

Composition series and soluble groups
Definition A normal subgroup N of a group G is called a maximal normal subgroup
of G if

(a) N 6= G;

(b) whenever N 6 M EG then either M = N or M = G.

By the Correspondence Theorem, if N CG and N 6= G then every normal subgroup
of G/N corresponds to a normal subgroup of G containing N. So a normal subgroup
N is maximal if and only if G/N is simple.

Definition Given a group G, a composition series for G of length n is a sequence of
subgroups

G = B0 > B1 > · · · > Bn = {1G}
such that

(a) Bi CBi−1 for i = 1, . . . , n,

(b) Bi−1/Bi is simple for i = 1, . . . , n.

In particular, B1 is a maximal normal subgroup of G and Bn−1 is simple. The (iso-
morphism classes of the) quotient groups Bi/Bi−1 are called composition factors of G.

Example S4 has the following composition series of length 4, where K is the Klein
group {(1), (12)(34), (13)(24), (14)(23)}.

S4 > A4 > K > 〈(12)(34)〉 > {1}

We know that A4 CS4; the composition factor S4/A4 ∼= C2. We have seen that K CA4;
and A4/K ∼= C3. All subgroups of K are normal in K, because K is Abelian. Both
K/〈(12)(34)〉 and 〈(12)(34)〉/{1} are isomorphic to C2. So the composition factors
of S4 are C2 (three times) and C3 (once).
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A4 CS4 and S4/A4 ∼= C2

K CA4 and A4/K ∼= C3

H CK and K/H ∼= C2

{1}CH and H/{1} ∼= C2

Example If G is simple then its only composition series is G > {1}, of length 1.

Example (Z,+) has no composition series. If H 6 Z then H is cyclic of infinite order.
If H = 〈x〉 then 〈2x〉 is a subgroup of H with {0} 6= 〈2x〉 6= H, and 〈2x〉C H because
H is Abelian. So H is not simple. If B0 > B1 > · · · > Bn is a composition series then
Bn−1 is simple, so there can be no composition series.

Theorem Every finite group G has a composition series.

Proof We use induction on |G|. If |G| = 1 then the composition series is just G =
B0 = {1}.

Assume that |G| > 1 and that the result is true for all groups of order less than |G|.
Since G is finite, G has at least one maximal normal subgroup N. Then |N| < |G|, so
by induction N has a composition series N = B1 > B2 > · · ·> Bn = {1} with Bi CBi−1
and Bi−1/Bi simple for i = 2, . . . , n. Putting B0 = G gives the composition series
G = B0 > B1 > · · · > Bn = {1} for G, because B1 C B0 and B0/B1 = G/N, which is
simple. �

The next theorem shows that statements such as “the composition factors of S4 are
C2 (three times) and C3” do not depend on the choice of composition series.
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Jordan-Hölder Theorem Suppose that the finite group G has two composition series

G = B0 > B1 > · · · > Bn = {1}

and
G = C0 > C1 > · · · > Cm = {1} .

Then n = m and the lists of composition factors for the two series are identical in the
sense that if |H| 6 |G| and

φ(H) = |{i > 1 : Bi−1/Bi ∼= H}|

and
ψ(H) = |{i > 1 : Ci−1/Ci ∼= H}|

then φ(H) = ψ(H).

Proof We use induction on |G|. The result is true if |G| = 1.
Assume that |G| > 1 and that the result is true for all groups of order less than |G|.

Then n and m are both positive. Put

φ1(H) = |{i > 2 : Bi−1/Bi ∼= H}|

and
ψ1(H) = |{i > 2 : Ci−1/Ci ∼= H}| .

Then

φ(H) =
{

φ1(H)+1 if H ∼= G/B1
φ1(H) otherwise

and

ψ(H) =
{

ψ1(H)+1 if H ∼= G/C1
ψ1(H) otherwise.

First suppose that B1 = C1. Then B1 has the following two composition series:

B1 > · · · > Bn = {1}

of length n−1, and
B1 = C1 > · · · > Cm = {1}

of length m− 1. Now, |B1| < |G|, so by the inductive hypothesis the result is true
for B1, so n = m and φ1(H) = ψ1(H) for all H. If H ∼= G/B1 = G/C1 then φ(H) =
φ1(H)+1 = ψ1(H)+1 = ψ(H); otherwise φ(H) = φ1(H) = ψ1(H) = ψ(H). There-
fore the result is true for G.
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Secondly, suppose that B1 6= C1, and put D = B1∩C1. Because B1 and C1 are both
normal subgroups of G, so is B1C1. If B1C1 = B1 then B1 >C1, but this cannot be true,
because C1 is a maximal normal subgroup of G. Hence B1 6 B1C1 EG and B1C1 6= B1,
so B1C1 = G. By the Third Isomorphism Theorem, G/B1 = B1C1/B1 ∼= C1/B1∩C1 =
C1/D. Similarly, G/C1 ∼= B1/D.

Let D = D0 > D1 > · · · > Dt = {1} be a composition series for D, and put

θ(H) = |{i > 1 : Di−1/Di ∼= H}| .
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Now C1/D is simple, so

C1 > D > D1 > · · · > Dt = {1}

is a composition series for C1. So is

C1 > C2 > · · · > Cm = {1} .

But |C1| < |G|, so by inductive hypothesis t +1 = m−1 and

ψ1(H) =
{

θ(H)+1 if H ∼= C1/D
θ(H) otherwise.
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Applying the similar argument to B1 gives t +1 = n−1 and

φ1(H) =
{

θ(H)+1 if H ∼= B1/D
θ(H) otherwise.

Hence n = m. Moreover, since G/B1 ∼= C1/D and G/C1 ∼= B1/D, either

(a) G/B1 ∼= G/C1 and φ(H) = ψ(H) =
{

θ(H)+2 if H ∼= G/B1
θ(H) otherwise,

or

(b) G/B1 6∼= G/C1 and φ(H)= ψ(H)=
{

θ(H)+1 if H ∼= G/B1 or H ∼= G/C1
θ(H) otherwise.

�

Definition A finite group is soluble if all its composition factors are cyclic of prime
order.

Example S4 is soluble.

Example S5 is not soluble, because its only composition series is S5 > A5 > {1}.

We have already shown that if |G| = pn for some prime p then G has subgroups

{1G} = G0 < G1 < · · · < Gn = G

with Gi E G and |Gi| = pi for i = 0, . . . , n. So |Gi+1/Gi| = p so Gi+1/Gi ∼= Cp for
i = 0, . . . , n−1. Thus every finite p-group is soluble.

A composition series in which every subgroup is normal in the whole group is
called a chief series. A finite group is supersoluble if it has a chief series all of whose
composition factors are cyclic of prime order. So all finite p-groups are supersoluble.

Theorem If H is a normal subgroup of a finite group G, and if H and G/H are both
soluble then G is soluble.

Proof Let H = H0 > H1 > · · · > Hr = {1} be a composition series for H. Let G/H =
K0 > K1 > · · · > Ks = {H} be a composition series for G/H. By the Correspondence
Theorem, there are subgroups G0, . . . , Gs of G containing H such that Gi/H = Ki for
i = 0, . . . , s and Gi CGi−1 for i = 1, . . . , s. By the Second Isomorphism Theorem,

Ki−1/Ki = (Gi−1/H)/(Gi/H) ∼= Gi−1/Gi.

Then
G = G0 BG1 B · · ·BGs = H = H0 BH1 B · · ·BHr = {1}

is a composition series for G in which every composition factor is cyclic of prime
order. �
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This proof also shows that if H CG and H has a composition series of length r and
G/H has a composition series of length s then G has a composition series of length
r + s. In other words, (the composition length of G) = (the composition length of H)
+ (the composition length of G/H).

Corollary All finite Abelian groups are soluble.

Proof Use induction on |G|. If |G| = 1 then G is soluble.
Assume that G is Abelian, that |G| > 1 and that all Abelian groups of order less

than |G| are soluble. By Cauchy’s Theorem, G contains a subgroup H of prime order.
Thus H is soluble. Since G is Abelian, H E G and G/H is Abelian. But |H| > 1 so
|G/H| < |G|, so G/H is soluble, by inductive hypothesis. By the preceding theorem,
G is soluble. �

Theorem Let G be a finite group. Then G is soluble if and only if there is a sequence
of subgroups

G = B0 > B1 > · · · > Bn = {1}

such that

(a) Bi CBi−1 for i = 1, . . . , n

(b) Bi−1/Bi is Abelian for i = 1, . . . , n.

Proof If G is soluble then any composition series satisfies (a) and (b) with each
Bi−1/Bi cyclic of prime order, hence Abelian.

Conversely, use induction on the order of G. The result is true if |G| = 1. Now
assume that |G| > 1 and that the result is true for all groups of smaller order. Suppose
that G has a such a sequence. Then Bi−1/Bi is Abelian for i = 2, . . . , n, so B1 satisfies
the conditions. Also, |B1| < |G| . By inductive hypothesis, B1 is soluble, Moreover,
B1 C G and G/B1 is Abelian, hence soluble, by the preceding corollary. Hence G is
soluble, by the preceding theorem. �
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