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Composition series and soluble groups

Definition A normal subgroup N of a group G is called a maximal normal subgroup
of G if

(@) N #G;
(b) whenever N < M <G then either M =N or M = G.

By the Correspondence Theorem, if N <1G and N # G then every normal subgroup
of G/N corresponds to a normal subgroup of G containing N. So a normal subgroup
N is maximal if and only if G/N is simple.

Definition Given a group G, a composition series for G of length n is a sequence of
subgroups
G=By>B;>--->B,={lg}

such that
(a) Bi<diB;_1fori=1,...,n,
(b) Bi_1/B;issimplefori=1,...,n.

In particular, By is a maximal normal subgroup of G and B, is simple. The (iso-
morphism classes of the) quotient groups B;/B;_ are called composition factors of G.

Example S; has the following composition series of length 4, where K is the Klein
group {(1), (12)(34), (13)(24), (14)(23)}.

Ss>As>K>((12)(34)) > {1}

We know that A4 <1 S4; the composition factor S4 /A4 = C,. We have seen that K <1Ay;
and A4/K = C3. All subgroups of K are normal in K, because K is Abelian. Both
K/{(12)(34)) and ((12)(34))/{1} are isomorphic to C,. So the composition factors
of §4 are C, (three times) and C3 (once).
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Example If G is simple then its only composition series is G > {1}, of length 1.

Example (Z,+) has no composition series. If H < Z then H is cyclic of infinite order.
If H = (x) then (2x) is a subgroup of H with {0} # (2x) # H, and (2x) < H because
H is Abelian. So H is not simple. If By > By > --- > B,, is a composition series then
B,,_1 is simple, so there can be no composition series.

Theorem Every finite group G has a composition series.

Proof We use induction on |G|. If |G| = 1 then the composition series is just G =
By ={1}.

Assume that |G| > 1 and that the result is true for all groups of order less than |G]|.
Since G is finite, G has at least one maximal normal subgroup N. Then |[N| < |G|, so
by induction N has a composition series N = B} > By > -+ > B, = {1} with B;<1B;_;
and B;_/B; simple for i =2, ..., n. Putting By = G gives the composition series
G =By > B > ---> B, = {1} for G, because B; < By and By/B; = G/N, which is
simple. [J

The next theorem shows that statements such as “the composition factors of S4 are
C; (three times) and C3” do not depend on the choice of composition series.



Jordan-Holder Theorem Suppose that the finite group G has two composition series
G=Byg>B| > "'>Bn:{1}

and
G=C>C;>-->Cp={l1}.

Then n = m and the lists of composition factors for the two series are identical in the
sense that if |[H| < |G| and

O(H)=[{i>1:B;_1/B; = H}|

and
Y(H)=[{i>1:Ci-1/C;i=H}|

then ¢(H) = y(H).

Proof We use induction on |G|. The result is true if |G| = 1.
Assume that |G| > 1 and that the result is true for all groups of order less than |G]|.
Then n and m are both positive. Put

O1(H)=|{i>2:Bi_1/Bi=H}|

and
yi(H)=[{i>2:C-1/Ci=H}|.
Then oi(H) L1 if G/
[oi(H)+1 ifH=G/B
O(H) = {q)l (H) otherwise
and

_JwiH)+1 ifH=G/C
V(H) = {\yl (H) otherwise.

First suppose that B; = C;. Then B; has the following two composition series:
By >--->B,={l1}
of length n — 1, and
Bi=C;>--->C,={1}

of length m — 1. Now, |B;| < |G|, so by the inductive hypothesis the result is true
for Bj,son=mand ¢,(H) =y (H) for all H. If H = G/B; = G/C) then ¢(H) =
01(H)+1=wy(H)+1=wy(H); otherwise ¢(H) = ¢1(H) = v, (H) = y(H). There-
fore the result is true for G.



Secondly, suppose that By # Cy, and put D = B; N C}. Because B and C; are both
normal subgroups of G, so is B1C. If B1C; = B then B; > (7, but this cannot be true,
because C| is a maximal normal subgroup of G. Hence B; < B|C; <G and B|C; # By,
so B1C) = G. By the Third Isomorphism Theorem, G/B; = B|C;/B; = C;/B1NC| =
Cl/D. Similarly, G/C1 = Bl/D.

Let D =Dy > Dy > --- > D, = {1} be a composition series for D, and put

G(H) = |{l> 1 1Di,1/Di§H}‘.
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Now C; /D is simple, so
Ci,>D>Dy>--->D,={l1}
is a composition series for C. So is
C>C>-->Cp=A{1}.
But |C}| < |G], so by inductive hypothesis  + 1 =m — 1 and

_[6(H)+1 ifH=C/D
Vi(H) = {O(H ) otherwise.



Applying the similar argument to By givest+ 1 =n—1 and

(e(H)+1 ifH=B/D
O1(H) = {G(H) otherwiscli.

Hence n = m. Moreover, since G/B) = C| /D and G/C| = B} /D, either

() G/By = G/C) and O(H) = y(H) — {ggg; +2 MH=G/B

otherwise,

O(H)+1 ifH=G/ByorH=G/C,

(b) G/B1%G/Ciand 9(H) =y(H) = { 0(H) otherwise. -

Definition A finite group is soluble if all its composition factors are cyclic of prime
order.

Example S is soluble.
Example S5 is not soluble, because its only composition series is S5 > As > {1}.
We have already shown that if |G| = p” for some prime p then G has subgroups
{16} =Go <G <+ <G, =G

with G;<G and |G;| = p' fori =0, ..., n. So |Giy1/Gi| = p s0 Gi+1/G; = C, for
i=0,...,n—1. Thus every finite p-group is soluble.

A composition series in which every subgroup is normal in the whole group is
called a chief series. A finite group is supersoluble if it has a chief series all of whose
composition factors are cyclic of prime order. So all finite p-groups are supersoluble.

Theorem If H is a normal subgroup of a finite group G, and if H and G/H are both
soluble then G is soluble.

Proof Let H=Hy > H; > --- > H, = {1} be a composition series for H. Let G/H =
Ko > K; > --- > Ky = {H} be a composition series for G/H. By the Correspondence
Theorem, there are subgroups Gy, ..., G5 of G containing H such that G;/H = K; for
i=0,...,5and G;<G;_1 fori=1,...,s. By the Second Isomorphism Theorem,

Ki—1/Ki = (Gi-1/H)/(Gi/H) = Gi-1/Gi.

Then
G=Gy>G|>--->Gy=H=Hy>H>--->H, = {1}

is a composition series for G in which every composition factor is cyclic of prime
order. [



This proof also shows that if H <t G and H has a composition series of length r and
G/H has a composition series of length s then G has a composition series of length
r+s. In other words, (the composition length of G) = (the composition length of H)
+ (the composition length of G/H).

Corollary All finite Abelian groups are soluble.

Proof Use induction on |G|. If |G| = 1 then G is soluble.

Assume that G is Abelian, that |G| > 1 and that all Abelian groups of order less
than |G| are soluble. By Cauchy’s Theorem, G contains a subgroup H of prime order.
Thus H is soluble. Since G is Abelian, H <G and G/H is Abelian. But |H| > 1 so
|G/H| < |G|, so G/H is soluble, by inductive hypothesis. By the preceding theorem,
Gissoluble. [

Theorem Let G be a finite group. Then G is soluble if and only if there is a sequence
of subgroups
G=By>B;>--->B,={l1}

such that
(@) Bi<iB;j_1fori=1,...,n

(b) Bi—1/B;is Abelianfori=1, ..., n.

Proof If G is soluble then any composition series satisfies (a) and (b) with each
B;_1/B; cyclic of prime order, hence Abelian.

Conversely, use induction on the order of G. The result is true if |G| = 1. Now
assume that |G| > 1 and that the result is true for all groups of smaller order. Suppose
that G has a such a sequence. Then B;_;/B; is Abelian for i =2, ..., n, so B satisfies
the conditions. Also, |Bj| < |G| . By inductive hypothesis, B is soluble, Moreover,
B| <G and G/B is Abelian, hence soluble, by the preceding corollary. Hence G is
soluble, by the preceding theorem. [J



