

MAS 305

Algebraic Structures II

Notes 8 Autumn 2006

Simple groups

Definition A nontrivial group G is *simple* if the only normal subgroups of G are $\{1_G\}$ and G. That is, a group is simple if it has precisely *two* normal subgroups.

If G is Abelian then all its subgroups are normal. Therefore, if it is nontrivial then either G is cyclic of prime order (and hence simple) or G is not simple.

If G is a nontrivial finite p-group for some prime p then it has normal subgroups of all orders dividing |G|. Hence either G is cyclic of prime order (and hence simple) or G is not simple.

If |G| = 2p for an odd prime p then G is not simple, because it has a normal subgroup of order p.

If $G = S_n$ for $n \ge 3$ then G is not simple, because A_n is a nontrivial normal subgroup.

We have proved that if $20 \le |G| \le 24$ then G is not non-Abelian simple. In fact, it is true that if $2 \le |G| \le 59$ then G is not non-Abelian simple. Most cases can be dealt with using the techniques we used for the range 20–24.

Example If |G| = 56 then G has 1 or 8 Sylow 7-subgroups. If 1, then it is normal, so G is not simple. If 8, then there are $8 \times 6 = 48$ elements of order 7 (because such an element cannot be in more than one subgroup of order 7), leaving at most 56 - 48 = 8 elements of orders dividing 8, so there can only be 1 Sylow 2-subgroup, so it is normal. Therefore G is not simple.

There is a non-Abelian simple group of order 60: the alternating group A_5 . The remainder of this section proves that the alternating groups A_n are simple for $n \ge 5$.

Lemma Let $x \in A_n$. Then either

- (a) $C_{S_n}(x) \leq A_n$ and the conjugacy class x^{S_n} splits up into two conjugacy classes of equal size in A_n ; or
- (b) $C_{S_n}(x)$ contains an odd permutation and x^{S_n} is a single conjugacy class in A_n .

Proof Write $C = C_{S_n}(x)$. Clearly $x^{A_n} \subseteq x^{S_n}$. Also, it is clear that either C contains an odd permutation or $C \leq A_n$.

(a) If
$$C \le A_n$$
 then $|x^{A_n}| = |A_n : C| = |A_n| / |C| = \frac{1}{2} |S_n| / |C| = \frac{1}{2} |S_n : C| = \frac{1}{2} |x^{S_n}|$.

(b) We know that A_nC is a subgroup of S_n , because $A_n \triangleleft S_n$. If $C \not\leqslant A_n$ then C contains an odd permutation and so A_nC is strictly larger than A_n , so $A_nC = S_n$. By the Third Isomorphism Theorem,

$$S_n/A_n = A_nC/A_n \cong C/A_n \cap C$$

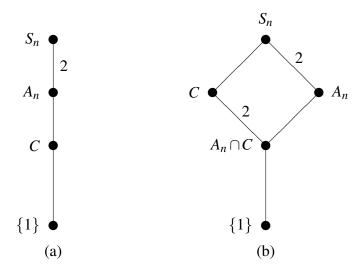
SO

$$|C:A_n\cap C|=|S_n:A_n|=2.$$

However, $A_n \cap C = C_{A_n}(x)$, so

$$\left| x^{A_n} \right| = |A_n : C_{A_n}(x)| = |A_n : A_n \cap C| = \frac{|A_n|}{|A_n \cap C|} = \frac{\frac{1}{2}|S_n|}{\frac{1}{2}|C|} = \frac{|S_n|}{|C|} = |S_n : C| = \left| x^{S_n} \right|.$$

Hence $x^{A_n} = x^{S_n}$.



We can use this lemma to see how the conjugacy classes of S_5 behave in A_5 .

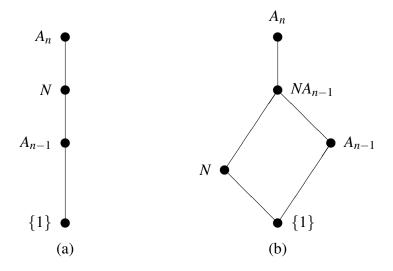
X	$ x^{S_5} $	odd permutation in $C(x)$?	size of conjucacy class(es) in A_5
(12345)	24	no	12+12
(123)	20	(45)	20
(12)(34)	15	(12)	15
(1)	1	yes	1
	60	-	

The only partial sums of 12, 12, 20, 15 and 1 which contain 1 and divide 60 are 1 and 60. Therefore A_5 is simple.

Theorem The alternating group A_n is simple if $n \ge 5$.

Proof We use induction on n. We have shown that A_5 is simple, so we assume that $n \ge 6$ and A_{n-1} is simple.

Let $N \subseteq A_n$. Then $N \cap A_{n-1} \subseteq A_{n-1}$. By the inductive hypothesis, $N \cap A_{n-1} = \{1\}$ or $N \cap A_{n-1} = A_{n-1}$, that is, $N \geqslant A_{n-1}$.



(a) Suppose that $N \geqslant A_{n-1}$. Write $G = A_n$, and let α be the point fixed by A_{n-1} . Then $G_{\alpha} \leqslant N$ so $N_{\alpha} = G_{\alpha} \cap N = G_{\alpha}$. Since $N \geqslant A_{n-1}$, the orbits of N are unions of orbits of A_{n-1} . The orbits of A_{n-1} have sizes 1 and n-1 (because $n \geqslant 4$), so either $|\alpha^N| = 1$ or $|\alpha^N| = n$. By the Orbit-Stabilizer Theorem, $|N:N_{\alpha}| = 1$ or n. If $|N:N_{\alpha}| = 1$ then $N = N_{\alpha} = G_{\alpha} = A_{n-1}$. But the conjugates of G_{α} are the other point-stabilizers, which are not contained in G_{α} , so $A_{n-1} \not\preceq A_n$, so $N \neq A_{n-1}$. If $|N:N_{\alpha}| = n$ then $|N| = n \times |N_{\alpha}| = n \times |A_{n-1}| = |A_n|$ so $N = A_n$.

(b) Suppose that $N \cap A_{n-1} = \{1\}$. Because $N \subseteq A_n$, we know that NA_{n-1} is a subgroup of A_n . By the Third Isomorphism Theorem,

$$NA_{n-1}/N \cong A_{n-1}/N \cap A_{n-1} = A_{n-1}/\{1\} \cong A_{n-1},$$

so $|NA_{n-1}|/|N| = |A_{n-1}|$ and so $|N| = |NA_{n-1}|/|A_{n-1}| \le |A_n|/|A_{n-1}| = n$. Therefore if $x \in N \setminus \{1\}$ then $|x^{A_n}| \le n-1$, because $x^{A_n} \subseteq N$ and the identity is a whole conjugacy class. By the lemma, $|x^{S_n}| \le 2(n-1)$.

Suppose that $x \in N \setminus \{1\}$. Then no conjugate of x is in G_{α} , so all cycles of x have length at least 2. If $g \in C(x)$ then $\beta x^r g = \beta g x^r$ for all points β and all positive integers r, so once βg is known than γg is known for all γ in the same cycle of x as β . Therefore, if x has a single cycle then $|C(x)| \le n$ and so $|x^{S_n}| \ge (n-1)! > 2(n-1)$ when $n \ge 5$. Otherwise, suppose that x has two cycles of lengths m_1 and m_2 (and possibly others). Then $|C(x)| \le n \times (n-m_1) \times (n-m_1-m_2)!$ so

$$\left|x^{S_n}\right| \geqslant (n-1) \times \cdots \times (n-m_1+1) \times (n-m_1-1) \times \cdots \times (n-m_1-m_2+1).$$

If $m_1 = 2$ then $|x^{S_n}| \ge (n-1)(n-3) \ge 3(n-1)$ when $n \ge 6$; while if $m_1 > 2$ then $|x^{S_n}| \ge (n-1)(n-2) \ge 4(n-1)$ when $n \ge 6$. So there can be no element x in $N \setminus \{1\}$, so $N = \{1\}$. \square