
MAS 305 Algebraic Structures II

Notes 8 Autumn 2006

Simple groups
Definition A nontrivial group G is simple if the only normal subgroups of G are {1G}
and G. That is, a group is simple if it has precisely two normal subgroups.

If G is Abelian then all its subgroups are normal. Therefore, if it is nontrivial then
either G is cyclic of prime order (and hence simple) or G is not simple.

If G is a nontrivial finite p-group for some prime p then it has normal subgroups
of all orders dividing |G|. Hence either G is cyclic of prime order (and hence simple)
or G is not simple.

If |G| = 2p for an odd prime p then G is not simple, because it has a normal
subgroup of order p.

If G = Sn for n > 3 then G is not simple, because An is a nontrivial normal sub-
group.

We have proved that if 20 6 |G|6 24 then G is not non-Abelian simple. In fact, it
is true that if 2 6 |G|6 59 then G is not non-Abelian simple. Most cases can be dealt
with using the techniques we used for the range 20–24.

Example If |G|= 56 then G has 1 or 8 Sylow 7-subgroups. If 1, then it is normal, so
G is not simple. If 8, then there are 8×6 = 48 elements of order 7 (because such an
element cannot be in more than one subgroup of order 7), leaving at most 56−48 = 8
elements of orders dividing 8, so there can only be 1 Sylow 2-subgroup, so it is normal.
Therefore G is not simple.

There is a non-Abelian simple group of order 60: the alternating group A5. The
remainder of this section proves that the alternating groups An are simple for n > 5.
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Lemma Let x ∈ An. Then either

(a) CSn(x) 6 An and the conjugacy class xSn splits up into two conjugacy classes of
equal size in An; or

(b) CSn(x) contains an odd permutation and xSn is a single conjugacy class in An.

Proof Write C = CSn(x). Clearly xAn ⊆ xSn . Also, it is clear that either C contains an
odd permutation or C 6 An.

(a) If C 6 An then
∣∣xAn

∣∣ = |An : C|= |An|/ |C|= 1
2 |Sn|/ |C|= 1

2 |Sn : C|= 1
2

∣∣xSn
∣∣.

(b) We know that AnC is a subgroup of Sn, because An C Sn. If C 66 An then C
contains an odd permutation and so AnC is strictly larger than An, so AnC = Sn.
By the Third Isomorphism Theorem,

Sn/An = AnC/An ∼= C/An∩C

so
|C : An∩C|= |Sn : An|= 2.

However, An∩C = CAn(x), so∣∣∣xAn
∣∣∣ = |An : CAn(x)|= |An : An∩C|= |An|

|An∩C|
=

1
2 |Sn|
1
2 |C|

=
|Sn|
|C|

= |Sn : C|=
∣∣∣xSn

∣∣∣ .
Hence xAn = xSn . �
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We can use this lemma to see how the conjugacy classes of S5 behave in A5.

x
∣∣xS5

∣∣ odd permutation in C(x)? size of conjucacy class(es) in A5

(12345) 24 no 12+12

(123) 20 (45) 20

(12)(34) 15 (12) 15

(1) 1 yes 1

60

The only partial sums of 12, 12, 20, 15 and 1 which contain 1 and divide 60 are 1
and 60. Therefore A5 is simple.

Theorem The alternating group An is simple if n > 5.

Proof We use induction on n. We have shown that A5 is simple, so we assume that
n > 6 and An−1 is simple.

Let N EAn. Then N ∩An−1 EAn−1. By the inductive hypothesis, N ∩An−1 = {1}
or N∩An−1 = An−1, that is, N > An−1.
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(a) Suppose that N > An−1. Write G = An, and let α be the point fixed by An−1.
Then Gα 6 N so Nα = Gα ∩N = Gα. Since N > An−1, the orbits of N are unions
of orbits of An−1. The orbits of An−1 have sizes 1 and n− 1 (because n > 4), so
either

∣∣αN
∣∣ = 1 or

∣∣αN
∣∣ = n. By the Orbit-Stabilizer Theorem, |N : Nα| = 1 or n. If

|N : Nα|= 1 then N = Nα = Gα = An−1. But the conjugates of Gα are the other point-
stabilizers, which are not contained in Gα, so An−1 6 An, so N 6= An−1. If |N : Nα|= n
then |N|= n×|Nα|= n×|An−1|= |An| so N = An.
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(b) Suppose that N ∩ An−1 = {1}. Because N E An, we know that NAn−1 is a
subgroup of An. By the Third Isomorphism Theorem,

NAn−1/N ∼= An−1/N∩An−1 = An−1/{1} ∼= An−1,

so |NAn−1|/ |N|= |An−1| and so |N|= |NAn−1|/ |An−1|6 |An|/ |An−1|= n. Therefore
if x∈N \{1} then

∣∣xAn
∣∣ 6 n−1, because xAn ⊆N and the identity is a whole conjugacy

class. By the lemma,
∣∣xSn

∣∣ 6 2(n−1).
Suppose that x ∈ N \{1}. Then no conjugate of x is in Gα, so all cycles of x have

length at least 2. If g∈C(x) then βxrg = βgxr for all points β and all positive integers r,
so once βg is known than γg is known for all γ in the same cycle of x as β. Therefore,
if x has a single cycle then |C(x)|6 n and so

∣∣xSn
∣∣ > (n−1)! > 2(n−1) when n > 5.

Otherwise, suppose that x has two cycles of lengths m1 and m2 (and possibly others).
Then |C(x)|6 n× (n−m1)× (n−m1−m2)! so∣∣∣xSn

∣∣∣ > (n−1)×·· ·× (n−m1 +1)× (n−m1−1)×·· ·× (n−m1−m2 +1).

If m1 = 2 then
∣∣xSn

∣∣ > (n− 1)(n− 3) > 3(n− 1) when n > 6; while if m1 > 2 then∣∣xSn
∣∣ > (n−1)(n−2) > 4(n−1) when n > 6. So there can be no element x in N \{1},

so N = {1}. �
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