

MAS 305

Algebraic Structures II

Notes 7 Autumn 2006

Sylow's Theorems

Let G be a finite group of order N. Lagrange's Theorem tells us that if $H \leq G$ then |H| divides N. The converse is not true: there may be some m dividing N for which G has no subgroup of order m.

Example Take $G = A_4$, with |G| = 12. Then $6 \mid 12$ but A_4 has no subgroup of order 6.

Sylow' Theorems tell us that the converse is true when m is a power of a prime number. The following theorem gives the heart of the proof.

Theorem A Let $|G| = p^n s$, where p is a prime, $n \ge 1$ and $p \nmid s$. For i = 1, ..., n,

- (a) G contains at least one subgroup of order p^i , and
- (b) if i < n, every such subgroup is normally contained in a subgroup of order p^{i+1} .

Proof We use a double induction:

Start Statement (a) is true when i = 0: take the subgroup $\{1_G\}$.

One part of inductive step Statement (b) for i clearly implies statement (a) for i+1.

Other part of inductive step Assume statement (a) for i, where i < n. Then G contains a subgroup P of order p^i .

Consider the action of P by right multiplication on its own right cosets in G. The number of cosets is $|G:P|=p^{n-i}s$, which is divisible by p if $i \le n-1$. The size of each orbit of P divides p^i , so is a power of p, so the number m of orbits of size 1 is divisible by p. Now, $\{Px\}$ is an orbit of size 1 if and only if $x \in N(P)$, so $|N(P)|=mp^i$. But $P \le N(P)$, so $m \ne 0$. Now, $P \le N(P)$, so we can form N(P)/P, and |N(P)/P|=m, which is divisible by p. By Cauchy's Theorem, N(P)/P has an element of order p and hence a subgroup H of order p. By the Correspondence Theorem, N(P) has a subgroup H of order p. So statement (b) is true for p.

The following picture illustrates the last step in the proof.

Definition Let p be a prime. A *Sylow p-subgroup* of a finite group G is a subgroup H of G such that |H| is the highest power of p dividing |G|.

A Sylow subgroup of G is a Sylow p-subgroup for some prime p.

Corollary 1 to Theorem A (Sylow's First Theorem) If the prime p divides the order of a finite group G, then G has at least one Sylow p-subgroup.

Corollary 2 to Theorem A If the prime p divides the order of a finite group G and H is a p-subgroup of G then H is contained in at least one Sylow p-subgroup of G.

Corollary 3 to Theorem A If the prime p divides the order of a finite group G and H is a p-subgroup of G and p divides |G:H| (in particular, if G is a p-group and H is any subgroup other than G itself), then p divides |N(H):H|; in particular, $H \nleq N(H)$.

Sylow's Second Theorem For each prime p dividing the order of a finite group G, all Sylow p-subgroups of G are conjugate to each other.

Sylow's Third Theorem For each prime p dividing the order of a finite group G, the number of Sylow p-subgroups of G is congruent to 1 modulo p and divides |G|.

Proof of both theorems Let $|G| = p^n s$, where p is prime, $n \ge 1$ and $p \nmid s$. Let Ω be the set of Sylow p-subgroups of G. By Sylow's First Theorem, we know that Ω is not empty. Let P and Q be in Ω .

Consider the action of P on Ω by conjugation. If Q is a fixed point of this action then $Q^g = Q$ for all g in P, so $g \in N(Q)$ for all g in P, so $P \leq N(Q)$. Consider the group N(Q): we have $P \leq N(Q)$ and $Q \subseteq N(Q)$. By the Third Isomorphism Theorem, PQ is a subgroup of N(Q) and $PQ/Q \cong P/P \cap Q$. Therefore PQ is a subgroup of Q of order

$$\frac{|P| \times |Q|}{|P \cap Q|} = \frac{p^{2n}}{|P \cap Q|},$$

which is a power of p. Now, $P \le PQ$ and $|P| = p^n$, which is the highest power of p dividing |G|, so $|PQ| = p^n$ and P = PQ. Similarly, Q = PQ. Hence Q = P.

Conversely, P itself is certainly a fixed point of this action. So, under the action of P, $\{P\}$ is the only orbit of size 1. All orbits have size dividing p^n , so all the other orbits have size divisible by p. This proves the first part of Sylow's Third Theorem.

Now consider the action of G on Ω by conjugation. The orbits of G are unions of orbits of P, so the orbit of G containing P has size mp+1 for some m, while any other orbit of G has size rp for some r. Suppose that Q is in another orbit. Then applying the previous argument with Q in place of P shows that p divides mp+1. This contradiction shows that there cannot be another orbit; that is, that G has a single orbit on Sylow p-subgroups, which proves Sylow's Second Theorem.

Now the number of Sylow p-subgroups is equal to the number of conjugates of P in G, which is |G:N(P)|, which divides G. This proves the second part of Sylow's Third Theorem. \square

Some applications of Sylow's Theorems

Groups of order 2p

Suppose that p is an odd prime and |G| = 2p. If H is a Sylow p-subgroup of G then |H| = p, so H is cyclic. Let $H = \langle h \rangle$. Also, |G: N(H)| divides 2 and is congruent to 1 modulo p, so it must be 1. That is, N(H) = G and $H \triangleleft G$, and H is the unique Sylow p-subgroup of G.

By Cauchy's Theorem, G has an element g of order 2. Since $H \triangleleft G$, $g^{-1}hg = h^r$ for some integer r. The map $x \mapsto g^{-1}xg$ is an isomorphism (proof: exercise), so $g^{-1}h^rg = (g^{-1}hg)^r = (h^r)^r = h^{r^2}$. Also, $g^{-1}h^rg = g^{-1}(g^{-1}hg)g = g^{-2}hg^2 = h$ because $g^2 = 1_G$. Therefore $h^{r^2} = h$, so $r^2 = 1$ modulo p. Since p is prime, the integers modulo p form a field, so the only solutions are $r = \pm 1$ modulo p.

If r = 1 then gh = hg and so gh has order 2p (proof: exercise): therefore $G = \langle gh \rangle$ and G is cyclic. Hence G is Abelian, so $\langle g \rangle \lhd G$, so there is only one Sylow 2-subgroup.

If r = -1 then $ghg = h^{-1}$. We shall show that $G \cong D_{2p}$. Label the vertices of the regular p-gon by $0, 1, \ldots, p-1$, in the clockwise direction. Let \bar{h} be clockwise rotation through $2\pi/p$, so that $x\bar{h} = x+1$ for every vertex x (using addition modulo p). Let \bar{g} be the reflection through the line of symmetry through the vertex 0, so that $x\bar{g} = p-x$ for every vertex x.

Then

$$x(\bar{g}\bar{h}\bar{g}) = (p-x)(\bar{h}\bar{g}) = (p-x+1)\bar{g} = (x-1) = x\bar{g}^{-1}$$

for every vertex x. Thus the elements of D_{2p} satisfy the correct equations and give a group of the correct order, so $G \cong D_{2p}$.

In D_{2p} there are p Sylow 2-subgroups, one generated by each reflection.

Sylow subgroups of A_4

Temporarily, let us write Q_p for a Sylow p-subgroup, and $N_p = N(Q_p)$.

We have $|A_4| = 12 = 2^2.3$. First consider p = 3. Then $|Q_3| = 3$ and so Q_3 is cyclic. There are eight elements of order 3, which come in inverse pairs, so there are four Sylow 3-subgroups, so $|A_4:N_3| = 4$: therefore $N_3 = Q_3$.

Second, consider p = 2. We have $|Q_2| = 4$. There are three elements of order 2, none of order 4, and one of order 1, so these elements whose orders are powers of 2 must all be in a single Sylow 2-subgroup, which is therefore normal in A_4 . This subgroup $\{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$ is sometimes called the *Klein* subgroup of A_4 , and written K.

Sylow subgroups of S_4

Now $|S_4| = 24 = 2^3.3$. First consider p = 3. Again, Q_3 is cyclic of order 3 and so there are four Sylow 3-subgroups. Now $|N_3| = 24/4 = 6$. Take $Q = \langle (123) \rangle$. In fact, $Q = \langle A_3 \text{ on } \{1,2,3\} \rangle$. Then $Q \subseteq \langle S_3 \text{ on } \{1,2,3\} \rangle$, so $S_3 \cong S_3$.

Second, consider p=2. This time, $|Q_2|=8$. We know one group of order eight which permutes four objects: the dihedral group D_8 . Since D_8 must be contained in S_4 , we have $Q_2 \cong D_8$. There are three ways of drawing a square through four points, so there are three Sylow 2-subgroups. (Alternatively, we can argue that D_8 contains exactly two permutations of cycle type 4, and S_4 contains six such permutations, so there must be three Sylow 2-subgroups.) Therefore $|N_2|=24/3=8$ and so $N_2=Q_2$.

Sylow subgroups of S_5

$$|S_5| = 120 = 2^3.3.5.$$

First consider p = 5. Here Q_5 is cyclic of order 5. There are 24 elements of order 5, with four in each cyclic subgroup of order 5, so there are 6 Sylow 5-subgroups. Therefore $|N_5| = 120/6 = 20$. Can we describe the group N_5 in any other way?

Consider the set of permutations of the integers modulo 5 of the form

$$x \mapsto ax + b$$
,

where a and b are integers modulo 5 and $a \neq 0$. There are 20 such permutations, and it is straightforward to check that they form a group, which is called the *affine* group of dimension 1 over \mathbb{F}_5 , written Aff(1,5). The only divisor of 4 which is congruent to 1 modulo 5 is 1 itself, so the Sylow 5-subgroup of Aff(1,5) is normal. Since this group permutes five objects, it must be contained in S_5 . Thus we have a group of order 20, contained in S_5 and normalizing a subgroup of order 5, so it must be the one we are looking for: that is, $N_5 \cong \text{Aff}(1,5)$.

Second, consider p=3. Again, Q_3 is cyclic of order 3. There are 20 elements of order 3, and hence 10 Sylow 3-subgroups. Therefore $|N_3|=120/10=12$. If $Q=\langle (123)\rangle$ then $Q=(A_3 \text{ on } \{1,2,3\})$ so it it is clear that Q is a normal subgroup of $(S_3 \text{ on } \{1,2,3\})\times\langle (45)\rangle$, so $N_3\cong S_3\times S_2$.

Finally, consider p=2. $|Q_2|=8$. The stabilizer of a point in S_5 is S_4 , which contains groups isomorphic to D_8 , of order 8, so again we must have $Q_2 \cong D_8$. There are 5 ways of choosing a point to miss out of the square, so there are $5 \times 3 = 15$ Sylow 2-subgroups. Therefore $|N_2| = 120/15 = 8 = |Q_2|$ and so $N_2 = Q_2$.

One more theorem about Sylow stuff

Theorem Let p be a prime. If P is a Sylow p-subgroup of a finite group G and H = N(P) then N(H) = H. In words: Sylow normalizers are self-normalizing.

Proof If $g \in N(H)$ then $P^g \le H$ so P^g is a Sylow p-subgroup of H. But $P \le H$, so P is the only Sylow p-subgroup of H, so $P^g = P$. Threfore $g \in N(P) = H$. This shows that $N(H) \le H$. However, $H \le N(H)$ for all subgroups H, and therefore N(H) = H. \square

You might like to verify this on the Sylow normalizers that we have just found.

Groups with orders 20-24

Now we shall use Sylow's Theorems to investigate groups of these orders.

Notation C_n denotes a cyclic group of order n.

If |G| = 20 then the Sylow 5-subgroup is normal and is isomorphic to C_5 . Possibilities include

 C_{20} , which has a single Sylow 2-subgroup, isomorphic to C_4 ;

 D_{20} , which has five Sylow 2-subgroups, each isomorphic to the Klein group;

Aff(1,5), which has five Sylow 2-subgroups, each isomorphic to C_4 .

If |G| = 21, then the Sylow-7 subgroup is normal and is isomorphic to C_7 . The number of Sylow 3-subgroups is either 1 or 7. If the Sylow 3-subgroup is also normal then the group is isomorphic to C_{21} . In fact, there is another group of order 21 which has seven Sylow 3-subgroups.

If |G| = 22 then $G \cong C_{22}$ or $G \cong D_{22}$, because 11 is an odd prime.

If |G| = 23 then $G \cong C_{23}$, because 23 is prime.

If $|G| = 24 = 2^3.3$ then one of the following happens.

- (i) The Sylow 3-subgroup is normal. Then there are various possibilities, including C_{24} and D_{24} .
- (ii) There are four Sylow 3-subgroups and $|G:N_3|=4$ so $|N_3|=6$. Then there is a normal subgroup K of G, contained in N_3 , such that G/K is isomorphic to a transitive subgroup of S_4 . If $K=\{1_G\}$ then $G\cong S_4$. We cannot have K equal to the Sylow 3-subgroup Q_3 in N_3 , because that is not normal in G. We cannot have $K=N_3$, because N_3 is not normal in G, by the theorem about Sylow normalizers. The only other possibility is that |K|=2 and $G/K\cong A_4$.