
MAS 305 Algebraic Structures II

Notes 7 Autumn 2006

Sylow’s Theorems
Let G be a finite group of order N. Lagrange’s Theorem tells us that if H 6 G then
|H| divides N. The converse is not true: there may be some m dividing N for which
G has no subgroup of order m.

Example Take G = A4, with |G|= 12. Then 6 | 12 but A4 has no subgroup of order 6.

Sylow’ Theorems tell us that the converse is true when m is a power of a prime
number. The following theorem gives the heart of the proof.

Theorem A Let |G|= pns, where p is a prime, n > 1 and p - s. For i = 1, . . . , n,

(a) G contains at least one subgroup of order pi, and

(b) if i < n, every such subgroup is normally contained in a subgroup of order pi+1.

Proof We use a double induction:

(a) (i = 0) (b) (i = 0)

(a) (i = 1) (b) (i = 1)

(a) (i = 2) (b) (i = 2)
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Start Statement (a) is true when i = 0: take the subgroup {1G}.

One part of inductive step Statement (b) for i clearly implies statement (a) for i+1.

Other part of inductive step Assume statement (a) for i, where i < n. Then G con-
tains a subgroup P of order pi.

Consider the action of P by right multiplication on its own right cosets in G. The
number of cosets is |G : P|= pn−is, which is divisible by p if i 6 n−1. The size
of each orbit of P divides pi, so is a power of p, so the number m of orbits of
size 1 is divisible by p. Now, {Px} is an orbit of size 1 if and only if x ∈ N(P),
so |N(P)| = mpi. But P 6 N(P), so m 6= 0. Now, P E N(P), so we can form
N(P)/P, and |N(P)/P| = m, which is divisible by p. By Cauchy’s Theorem,
N(P)/P has an element of order p and hence a subgroup H of order p. By the
Correspondence Theorem, N(P) has a subgroup H̄ of order pi+1 containing P.
So statement (b) is true for i. �

The following picture illustrates the last step in the proof.
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Definition Let p be a prime. A Sylow p-subgroup of a finite group G is a subgroup H
of G such that |H| is the highest power of p dividing |G|.

A Sylow subgroup of G is a Sylow p-subgroup for some prime p.

Corollary 1 to Theorem A (Sylow’s First Theorem) If the prime p divides the order
of a finite group G, then G has at least one Sylow p-subgroup.

Corollary 2 to Theorem A If the prime p divides the order of a finite group G and
H is a p-subgroup of G then H is contained in at least one Sylow p-subgroup of G.
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Corollary 3 to Theorem A If the prime p divides the order of a finite group G and
H is a p-subgroup of G and p divides |G : H| (in particular, if G is a p-group and H is
any subgroup other than G itself), then p divides |N(H) : H|; in particular, H � N(H).

Sylow’s Second Theorem For each prime p dividing the order of a finite group G, all
Sylow p-subgroups of G are conjugate to each other.

Sylow’s Third Theorem For each prime p dividing the order of a finite group G, the
number of Sylow p-subgroups of G is congruent to 1 modulo p and divides |G|.

Proof of both theorems Let |G| = pns, where p is prime, n > 1 and p - s. Let Ω be
the set of Sylow p-subgroups of G. By Sylow’s First Theorem, we know that Ω is not
empty. Let P and Q be in Ω.

Consider the action of P on Ω by conjugation. If Q is a fixed point of this action
then Qg = Q for all g in P, so g ∈ N(Q) for all g in P, so P 6 N(Q). Consider the
group N(Q): we have P 6 N(Q) and QEN(Q). By the Third Isomorphism Theorem,
PQ is a subgroup of N(Q) and PQ/Q∼= P/P∩Q. Therefore PQ is a subgroup of G of
order

|P|× |Q|
|P∩Q|

=
p2n

|P∩Q|
,

which is a power of p. Now, P 6 PQ and |P| = pn, which is the highest power of p
dividing |G|, so |PQ|= pn and P = PQ. Similarly, Q = PQ. Hence Q = P.

Conversely, P itself is certainly a fixed point of this action. So, under the action
of P, {P} is the only orbit of size 1. All orbits have size dividing pn, so all the other
orbits have size divisible by p. This proves the first part of Sylow’s Third Theorem.

Now consider the action of G on Ω by conjugation. The orbits of G are unions
of orbits of P, so the orbit of G containing P has size mp + 1 for some m, while any
other orbit of G has size rp for some r. Suppose that Q is in another orbit. Then
applying the previous argument with Q in place of P shows that p divides mp + 1.
This contradiction shows that there cannot be another orbit; that is, that G has a single
orbit on Sylow p-subgroups, which proves Sylow’s Second Theorem.

Now the number of Sylow p-subgroups is equal to the number of conjugates of P
in G, which is |G : N(P)|, which divides G. This proves the second part of Sylow’s
Third Theorem. �
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Some applications of Sylow’s Theorems
Groups of order 2p

Suppose that p is an odd prime and |G| = 2p. If H is a Sylow p-subgroup of G then
|H|= p, so H is cyclic. Let H = 〈h〉. Also, |G : N(H)| divides 2 and is congruent to 1
modulo p, so it must be 1. That is, N(H) = G and H CG, and H is the unique Sylow
p-subgroup of G.

By Cauchy’s Theorem, G has an element g of order 2. Since H C G, g−1hg = hr

for some integer r. The map x 7→ g−1xg is an isomorphism (proof: exercise), so
g−1hrg = (g−1hg)r = (hr)r = hr2

. Also, g−1hrg = g−1(g−1hg)g = g−2hg2 = h because
g2 = 1G. Therefore hr2

= h, so r2 = 1 modulo p. Since p is prime, the integers
modulo p form a field, so the only solutions are r =±1 modulo p.

If r = 1 then gh = hg and so gh has order 2p (proof: exercise): therefore G =
〈gh〉 and G is cyclic. Hence G is Abelian, so 〈g〉C G, so there is only one Sylow
2-subgroup.

If r = −1 then ghg = h−1. We shall show that G ∼= D2p. Label the vertices of
the regular p-gon by 0, 1, . . . , p− 1, in the clockwise direction. Let h̄ be clockwise
rotation through 2π/p, so that xh̄ = x+1 for every vertex x (using addition modulo p).
Let ḡ be the reflection through the line of symmetry through the vertex 0, so that
xḡ = p− x for every vertex x.

0

1

xp− x

←→ ḡ

y h̄

Then
x(ḡh̄ḡ) = (p− x)(h̄ḡ) = (p− x+1)ḡ = (x−1) = xḡ−1

for every vertex x. Thus the elements of D2p satisfy the correct equations and give a
group of the correct order, so G∼= D2p.

In D2p there are p Sylow 2-subgroups, one generated by each reflection.
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Sylow subgroups of A4

Temporarily, let us write Qp for a Sylow p-subgroup, and Np = N(Qp).
We have |A4| = 12 = 22.3. First consider p = 3. Then |Q3| = 3 and so Q3 is

cyclic. There are eight elements of order 3, which come in inverse pairs, so there are
four Sylow 3-subgroups, so |A4 : N3|= 4: therefore N3 = Q3.

Second, consider p = 2. We have |Q2| = 4. There are three elements of order
2, none of order 4, and one of order 1, so these elements whose orders are powers
of 2 must all be in a single Sylow 2-subgroup, which is therefore normal in A4. This
subgroup {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is sometimes called the Klein sub-
group of A4, and written K.

Sylow subgroups of S4

Now |S4| = 24 = 23.3. First consider p = 3. Again, Q3 is cyclic of order 3 and so
there are four Sylow 3-subgroups. Now |N3|= 24/4 = 6. Take Q = 〈(123)〉. In fact,
Q = (A3 on {1,2,3}). Then QE (S3 on {1,2,3}), so N3 ∼= S3.

Second, consider p = 2. This time, |Q2| = 8. We know one group of order eight
which permutes four objects: the dihedral group D8. Since D8 must be contained
in S4, we have Q2∼= D8. There are three ways of drawing a square through four points,
so there are three Sylow 2-subgroups. (Alternatively, we can argue that D8 contains
exactly two permutations of cycle type 4, and S4 contains six such permutations, so
there must be three Sylow 2-subgroups.) Therefore |N2|= 24/3 = 8 and so N2 = Q2.

Sylow subgroups of S5

|S5|= 120 = 23.3.5.
First consider p = 5. Here Q5 is cyclic of order 5. There are 24 elements of

order 5, with four in each cyclic subgroup of order 5, so there are 6 Sylow 5-subgroups.
Therefore |N5|= 120/6 = 20. Can we describe the group N5 in any other way?

Consider the set of permutations of the integers modulo 5 of the form

x 7→ ax+b,

where a and b are integers modulo 5 and a 6= 0. There are 20 such permutations, and it
is straightforward to check that they form a group, which is called the affine group of
dimension 1 over F5, written Aff(1,5). The only divisor of 4 which is congruent to 1
modulo 5 is 1 itself, so the Sylow 5-subgroup of Aff(1,5) is normal. Since this group
permutes five objects, it must be contained in S5. Thus we have a group of order 20,
contained in S5 and normalizing a subgroup of order 5, so it must be the one we are
looking for: that is, N5 ∼= Aff(1,5).
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Second, consider p = 3. Again, Q3 is cyclic of order 3. There are 20 elements
of order 3, and hence 10 Sylow 3-subgroups. Therefore |N3| = 120/10 = 12. If
Q = 〈(123)〉 then Q = (A3 on {1,2,3}) so it it is clear that Q is a normal subgroup of
(S3 on {1,2,3})×〈(45)〉, so N3 ∼= S3×S2.

Finally, consider p = 2. |Q2| = 8. The stabilizer of a point in S5 is S4, which
contains groups isomorphic to D8, of order 8, so again we must have Q2 ∼= D8. There
are 5 ways of choosing a point to miss out of the square, so there are 5×3 = 15 Sylow
2-subgroups. Therefore |N2|= 120/15 = 8 = |Q2| and so N2 = Q2.

One more theorem about Sylow stuff

Theorem Let p be a prime. If P is a Sylow p-subgroup of a finite group G and
H = N(P) then N(H) = H. In words: Sylow normalizers are self-normalizing.

Proof If g ∈N(H) then Pg 6 H so Pg is a Sylow p-subgroup of H. But PEH, so P is
the only Sylow p-subgroup of H, so Pg = P. Threfore g ∈ N(P) = H. This shows that
N(H) 6 H. However, H 6 N(H) for all subgroups H, and therefore N(H) = H. �

You might like to verify this on the Sylow normalizers that we have just found.

Groups with orders 20–24

Now we shall use Sylow’s Theorems to investigate groups of these orders.

Notation Cn denotes a cyclic group of order n.

If |G| = 20 then the Sylow 5-subgroup is normal and is isomorphic to C5. Possi-
bilities include

C20, which has a single Sylow 2-subgroup, isomorphic to C4;

D20, which has five Sylow 2-subgroups, each isomorphic to the Klein group;

Aff(1,5), which has five Sylow 2-subgroups, each isomorphic to C4.

If |G| = 21, then the Sylow-7 subgroup is normal and is isomorphic to C7. The
number of Sylow 3-subgroups is either 1 or 7. If the Sylow 3-subgroup is also normal
then the group is isomorphic to C21. In fact, there is another group of order 21 which
has seven Sylow 3-subgroups.

If |G|= 22 then G∼= C22 or G∼= D22, because 11 is an odd prime.
If |G|= 23 then G∼= C23, because 23 is prime.
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If |G|= 24 = 23.3 then one of the following happens.

(i) The Sylow 3-subgroup is normal. Then there are various possiblities, including
C24 and D24.

(ii) There are four Sylow 3-subgroups and |G : N3| = 4 so |N3| = 6. Then there
is a normal subgroup K of G, contained in N3, such that G/K is isomorphic
to a transitive subgroup of S4. If K = {1G} then G ∼= S4. We cannot have K
equal to the Sylow 3-subgroup Q3 in N3, because that is not normal in G. We
cannot have K = N3, because N3 is not normal in G, by the theorem about Sylow
normalizers. The only other possibility is that |K|= 2 and G/K ∼= A4.
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