\a_@_s/ Queen Mary

University of London

MAS 305 Algebraic Structures II

Notes 6 Autumn 2006

Groups of prime-power order
Definition Let p be a prime. A finite group G is a p-group if |G| is a power of p.
For example, Dg is a 2-group.
Lagrange’s Theorem shows that if G is a p-group and g is an element of G then
the order of g is a power of p.

Theorem If G is a non-trivial finite p-group for some prime p then Z(G) # {15}.

Proof Let |G| = p" for some n > 1. Every conjugacy class in G has size dividing p",
so has size p” for some r < n. Suppose that there are m, conjugacy classes of size p”
forr=0,1, ..., n Then

mol+mip+map? - mpp” - map" = pr,
so p divides mg. But {x} is a whole conjugacy class of size 1 if and only if x € Z(G),
so my = |Z(G)|: therefore my # 0, because {1} < Z(G). So |Z(G)| is a non-zero
multiple of p, and therefore |Z(G)| > p. O
(Compare this with the proof of Cauchy’s Theorem.)
Corollary If Gis a finite group of order p”, where p is prime, then there are subgroups
{I} =Go<Gi<---<G,=G

such that |G;| = p' and G;AG fori =0, ..., n.

Proof The proof is by induction on n. The statement is true when n = 1, for then
G() = {lg} and G1 =G.



Now take n > 2, and assume that the statement is true for n — 1. The theorem says
that Z(G) # {1}, so p divides |Z(G)|. By Cauchy’s Theorem, Z(G) has an element z
of order p. Put G; = (z). Then G| <G, because G| < Z(G). Also, |G| = p.

Put H = G/G;. Then |H| = p"/p = p"~!, so by the inductive hypothesis H has
subgroups

{ly}=Hoy<H  <---<H,_1=H

with |H;| = p’ and H; <H for i =0, ..., n— 1. By the Correspondence Theorem,
there is a subgroup G; of G containing G such that G;+1 /G| = H; and G;11 <G for
i=0,...,n— 1. Moreover, |G;1| = |G| x |H;| = p'*! fori =0, ..., n— 1. Finally,
the Correspondence Theorem shows that G; < G4 fori=0,...,n—1. [
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Theorem If G is Abelian then Z(G) = G; otherwise, G/Z(G) is not cyclic.

Proof Part of the coursework.



Small p-groups

Let p be a prime. If |G| = p then G is cyclic, because Lagrange’s Theorem shows that
every element of G other than the identity has order p.

If |G| = p? then |Z(G)| is 1 or p or p>. We have just proved that |Z(G)| # 1. If
|Z(G)| = p then |G/Z(G)| = p so G/Z(G) is cyclic, contradicting the above theorem:
hence |Z(G)| # p. Therefore Z(G) = G and so G is Abelian.

If G has an element of order p? then it is cyclic. Otherwise, all non-identity el-
ements have order p. Let a be an element of order p, and put A = (a). Choose any
element b in G\ A. Then b also has order p. Put B = (b). Now ANB < B; and
AN B cannot be B, because b ¢ A, so ANB = {1g}. Moreover, xy = yx for all x in A
and all y in B, because G is Abelian. Therefore G contains the internal direct product
(a) x (b). Because of the uniqueness of the expression of an element of an internal
direct product,

(a) x (D) ={d"b":0<n<p—-1,0<m< p—1},
and these p? products are all distinct. Therefore G = (a) x (b).

Challenge!

Find all groups of order 8.

Infinite p-groups

What could an infinite p-group be? Here is an example of an infinite group in which
every element has order a power of the prime 2. We work inside the infinite Abelian
group (C\ {0}, x). Put

G:{ezmm/zn:nEZ,n>O,mEZ}.

Then G contains elements of order 2" for alll non-negative integers n.



