
MAS 305 Algebraic Structures II

Notes 6 Autumn 2006

Groups of prime-power order
Definition Let p be a prime. A finite group G is a p-group if |G| is a power of p.

For example, D8 is a 2-group.
Lagrange’s Theorem shows that if G is a p-group and g is an element of G then

the order of g is a power of p.

Theorem If G is a non-trivial finite p-group for some prime p then Z(G) 6= {1G}.

Proof Let |G| = pn for some n > 1. Every conjugacy class in G has size dividing pn,
so has size pr for some r 6 n. Suppose that there are mr conjugacy classes of size pr

for r = 0, 1, . . . , n. Then

m01+m1 p+m2 p2 + · · ·+mr pr + · · ·+mn pn = pn,

so p divides m0. But {x} is a whole conjugacy class of size 1 if and only if x ∈ Z(G),
so m0 = |Z(G)|: therefore m0 6= 0, because {1G} 6 Z(G). So |Z(G)| is a non-zero
multiple of p, and therefore |Z(G)| > p. �

(Compare this with the proof of Cauchy’s Theorem.)

Corollary If G is a finite group of order pn, where p is prime, then there are subgroups

{1G} = G0 < G1 < · · · < Gn = G

such that |Gi| = pi and Gi EG for i = 0, . . . , n.

Proof The proof is by induction on n. The statement is true when n = 1, for then
G0 = {1G} and G1 = G.
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Now take n > 2, and assume that the statement is true for n−1. The theorem says
that Z(G) 6= {1G}, so p divides |Z(G)|. By Cauchy’s Theorem, Z(G) has an element z
of order p. Put G1 = 〈z〉. Then G1 EG, because G1 6 Z(G). Also, |G1| = p.

Put H = G/G1. Then |H| = pn/p = pn−1, so by the inductive hypothesis H has
subgroups

{1H} = H0 < H1 < · · · < Hn−1 = H

with |Hi| = pi and Hi E H for i = 0, . . . , n− 1. By the Correspondence Theorem,
there is a subgroup Gi+1 of G containing G1 such that Gi+1/G1 = Hi and Gi+1 EG for
i = 0, . . . , n−1. Moreover, |Gi+1| = |G1|× |Hi| = pi+1 for i = 0, . . . , n−1. Finally,
the Correspondence Theorem shows that Gi 6 Gi+1 for i = 0, . . . , n−1. �
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Theorem If G is Abelian then Z(G) = G; otherwise, G/Z(G) is not cyclic.

Proof Part of the coursework.
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Small p-groups
Let p be a prime. If |G|= p then G is cyclic, because Lagrange’s Theorem shows that
every element of G other than the identity has order p.

If |G| = p2 then |Z(G)| is 1 or p or p2. We have just proved that |Z(G)| 6= 1. If
|Z(G)| = p then |G/Z(G)| = p so G/Z(G) is cyclic, contradicting the above theorem:
hence |Z(G)| 6= p. Therefore Z(G) = G and so G is Abelian.

If G has an element of order p2 then it is cyclic. Otherwise, all non-identity el-
ements have order p. Let a be an element of order p, and put A = 〈a〉. Choose any
element b in G \ A. Then b also has order p. Put B = 〈b〉. Now A∩B 6 B; and
A∩B cannot be B, because b /∈ A, so A∩B = {1G}. Moreover, xy = yx for all x in A
and all y in B, because G is Abelian. Therefore G contains the internal direct product
〈a〉× 〈b〉. Because of the uniqueness of the expression of an element of an internal
direct product,

〈a〉×〈b〉 = {anbm : 0 6 n 6 p−1, 0 6 m 6 p−1} ,

and these p2 products are all distinct. Therefore G = 〈a〉×〈b〉.

Challenge!

Find all groups of order 8.

Infinite p-groups
What could an infinite p-group be? Here is an example of an infinite group in which
every element has order a power of the prime 2. We work inside the infinite Abelian
group (C\{0} ,×). Put

G =
{

e2πim/2n
: n ∈ Z, n > 0, m ∈ Z

}
.

Then G contains elements of order 2n for alll non-negative integers n.
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