MAS 305 # **Algebraic Structures II** Notes 6 Autumn 2006 ### **Groups of prime-power order** **Definition** Let p be a prime. A finite group G is a p-group if |G| is a power of p. For example, D_8 is a 2-group. Lagrange's Theorem shows that if G is a p-group and g is an element of G then the order of g is a power of p. **Theorem** If G is a non-trivial finite p-group for some prime p then $Z(G) \neq \{1_G\}$. **Proof** Let $|G| = p^n$ for some $n \ge 1$. Every conjugacy class in G has size dividing p^n , so has size p^r for some $r \le n$. Suppose that there are m_r conjugacy classes of size p^r for r = 0, 1, ..., n. Then $$m_0 1 + m_1 p + m_2 p^2 + \dots + m_r p^r + \dots + m_n p^n = p^n$$ so p divides m_0 . But $\{x\}$ is a whole conjugacy class of size 1 if and only if $x \in Z(G)$, so $m_0 = |Z(G)|$: therefore $m_0 \neq 0$, because $\{1_G\} \leqslant Z(G)$. So |Z(G)| is a non-zero multiple of p, and therefore $|Z(G)| \geqslant p$. \square (Compare this with the proof of Cauchy's Theorem.) **Corollary** If G is a finite group of order p^n , where p is prime, then there are subgroups $$\{1_G\} = G_0 < G_1 < \cdots < G_n = G$$ such that $|G_i| = p^i$ and $G_i \subseteq G$ for i = 0, ..., n. **Proof** The proof is by induction on n. The statement is true when n = 1, for then $G_0 = \{1_G\}$ and $G_1 = G$. Now take $n \ge 2$, and assume that the statement is true for n-1. The theorem says that $Z(G) \ne \{1_G\}$, so p divides |Z(G)|. By Cauchy's Theorem, Z(G) has an element z of order p. Put $G_1 = \langle z \rangle$. Then $G_1 \le G$, because $G_1 \le Z(G)$. Also, $|G_1| = p$. Put $H = G/G_1$. Then $|H| = p^n/p = p^{n-1}$, so by the inductive hypothesis H has subgroups $$\{1_H\} = H_0 < H_1 < \cdots < H_{n-1} = H$$ with $|H_i|=p^i$ and $H_i \leq H$ for $i=0,\ldots,n-1$. By the Correspondence Theorem, there is a subgroup G_{i+1} of G containing G_1 such that $G_{i+1}/G_1=H_i$ and $G_{i+1}\leq G$ for $i=0,\ldots,n-1$. Moreover, $|G_{i+1}|=|G_1|\times |H_i|=p^{i+1}$ for $i=0,\ldots,n-1$. Finally, the Correspondence Theorem shows that $G_i \leq G_{i+1}$ for $i=0,\ldots,n-1$. **Theorem** If G is Abelian then Z(G) = G; otherwise, G/Z(G) is not cyclic. **Proof** Part of the coursework. ### Small p-groups Let p be a prime. If |G| = p then G is cyclic, because Lagrange's Theorem shows that every element of G other than the identity has order p. If $|G| = p^2$ then |Z(G)| is 1 or p or p^2 . We have just proved that $|Z(G)| \neq 1$. If |Z(G)| = p then |G/Z(G)| = p so G/Z(G) is cyclic, contradicting the above theorem: hence $|Z(G)| \neq p$. Therefore Z(G) = G and so G is Abelian. If G has an element of order p^2 then it is cyclic. Otherwise, all non-identity elements have order p. Let a be an element of order p, and put $A = \langle a \rangle$. Choose any element b in $G \setminus A$. Then b also has order p. Put $B = \langle b \rangle$. Now $A \cap B \leqslant B$; and $A \cap B$ cannot be B, because $b \notin A$, so $A \cap B = \{1_G\}$. Moreover, xy = yx for all x in A and all y in B, because G is Abelian. Therefore G contains the internal direct product $\langle a \rangle \times \langle b \rangle$. Because of the uniqueness of the expression of an element of an internal direct product, $$\langle a \rangle \times \langle b \rangle = \{a^n b^m : 0 \leqslant n \leqslant p-1, \ 0 \leqslant m \leqslant p-1\},$$ and these p^2 products are all distinct. Therefore $G = \langle a \rangle \times \langle b \rangle$. #### Challenge! Find all groups of order 8. ### **Infinite** *p***-groups** What could an infinite *p*-group be? Here is an example of an infinite group in which every element has order a power of the prime 2. We work inside the infinite Abelian group $(\mathbb{C} \setminus \{0\}, \times)$. Put $$G = \left\{ e^{2\pi i m/2^n} : n \in \mathbb{Z}, \ n \geqslant 0, \ m \in \mathbb{Z} \right\}.$$ Then G contains elements of order 2^n for all non-negative integers n.