
MAS 305 Algebraic Structures II

Notes 5 Autumn 2006

Conjugacy
For x, g in a group G, put

xg = g−1xg,

which is called the conjugate of x by g.
Temporarily, write xg = xπg. Then xπ1G = 1Gx1G = x for all x in G, so π1G is the

identity permutation of G. Also

xπgπh = (g−1xg)πh = h−1g−1xgh = (gh)−1xgh = xπgh,

so conjugation is an action.
The orbit containing x is

xG = {xg : g ∈ G} ,

which is called the conjugacy class of x; so conjugacy is an equivalence relation.
The stabilizer of x is

Gx =
{

g ∈ G : g−1xg = x
}

= {g ∈ G : xg = gx} ,

which is called the centralizer of x in G, written C(x). So C(x) is a subgroup of G
and

∣∣xG
∣∣ = |G : C(x)|, by the Orbit-Stabilizer Theorem. In particular, if G is finite then∣∣xG

∣∣×|C(x)|= |G|. Note that 〈x〉6 C(x) for all x.
The kernel of the action is

{g ∈ G : xg = x for all x in G}= {g ∈ G : xg = gx for all x in G}=
\
x∈G

C(x).

This is called the centre of G, and written Z(G). So Z(G) is a normal subgroup of G.

Lemma Let H be a subgroup of a group G. Then H is a normal subgroup of G if and
only if H consists of whole conjugacy classes.
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Lemma In Sn, g is conjugate to h if and only if g and h have the same cycle structure.

Proof We have already seen that h and x−1hx have the same cycle structure. Con-
versely, if g and h have the same cycle structure then they can be matched up as

h = (a1 a2 . . . am) (c1 c2 . . . cr) . . .
g = (b1 b2 . . . bm) (d1 d2 . . . dr) . . .

Put aix = bi, cix = di and so on: then x−1hx = g. �

Note that the order of any permutation is the least common multiple of the lengths
of its cycles. For example, if x = (1 2)(3 4 5) then xn = (3 4 5)n if n is even and
xn = (1 2)n if n is divisible by 3:

x = (1 2)(3 4 5)
x2 = (3 5 4)
x3 = (1 2)
x4 = (3 4 5)
x5 = (1 2)(3 5 4)
x6 = (1).

Example We calculate the conjugacy classes in S5. For one permutation x in each
conjugacy class, we calculate the order of its centralizer as |C(x)|= 120/

∣∣xS5
∣∣.

(a) The identity 1S5 is conjugate only to itself, so {1S5} is a whole conjugacy class.
Evidently, C(1S5) is the whole of S5, which has order 120 = 120/1.

(b) Let x = (12). Then xS5 consists of all the transpositions. The number of trans-
positions is 5C2, so

∣∣xS5
∣∣ = 10 and |C(x)|= 120/10 = 12.

(c) Let x = (123). Then xS5 consists of all 3-cycles. There are 5× 4× 3 ways of
choosing the elements of the 3-cycle in order, but we can start the cycle at any
point in it, so the number of 3-cycles is (5× 4× 3)/3. Hence

∣∣xS5
∣∣ = 20 and

|C(x)|= 120/20 = 6.

(d) Similarly, if x = (1234) then
∣∣xS5

∣∣ = (5× 4× 3× 2)/4 = 30 and |C(x)| =
120/30 = 4.

(e) Similarly, if x = (12345) then
∣∣xS5

∣∣ = (5×4×3×2×1)/5 = 24 and |C(x)|=
120/24 = 5.

(f) Each 3-cycle is disjoint from exactly one transposition, so there are 20 permu-
tations conjugate to (123)(45). The order of the centralizer of this permutation
is 120/20 = 6.
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(g) Each transposition is disjoint from three other transpositions, so the number of
conjugates of (12)(34) is (10× 3)/2 (why do we have to divide by 2?). The
order of the centralizer of this permutation is 120/15 = 8.

Check: 1 + 10 + 20 + 30 + 24 + 20 + 15 = 120, so we have accounted for all the
elements of S5.

Before identifying the centralizers of elements of S5, we introduce a useful con-
struction. Suppose that a group G has subgroups H and K such that hk = kh for all h
in H and all k in K. Put

HK = {hk : h ∈ H, k ∈ K} .

Then H ⊆ HK and K ⊆ HK, so HK is not empty. If h1, h2 ∈ H and k1, k2 ∈ K then

(h1k1)−1(h2k2) = k−1
1 h−1

1 h2k2 = h−1
1 h2k−1

1 k2 ∈ HK

because h−1
1 h2 ∈ H and k−1

1 k2 ∈ K. Therefore HK is a subgroup of G. Also

(h1k1)−1h2(h1k1) = k−1
1 h−1

1 h2h1k1 = h−1
1 h2h1 ∈ H

and
(h1k1)−1k2(h1k1) = k−1

1 h−1
1 k2h1k1 = k−1

1 k2k1 ∈ K,

so H EHK and K EHK.
If h1k1 = h2k2 then h−1

2 h1 = k2k−1
1 , which is in H ∩K, so if H ∩K = {1G} then

each element of HK has a unique expression as hk for some h in H and k in K.

Definition Let H and K be subgroups of a group G. If hk = kh for all h in H and all k
in K, and if H ∩K = {1G}, then the subgroup HK is called the internal direct product
of H and K, and may be written H×K.

Example Now we shall find the centralizers of elements in S5, finding C(x) for one
element x in each conjugacy class. We already know |C(x)|, so as soon as we find a
subgroup H of C(x) with |H|= |C(x)| then we know that H = C(x).

(a) If x = 1S5 then C(x) = S5.

(b) If x = (12) then |C(x)| = 12. Of course, C(x) contains 〈x〉, which has order 2.
It also contains the subgroup H of all permutations of {3,4,5}, which is iso-
morphic to S3. Now, 〈x〉∩H = {1S5}, so C(x) contains 〈x〉×H, whose order is
2×|S3|= 12. Therefore C((12)) is precisely 〈(12)〉× (S3 on {3,4,5}).
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(c) Similarly, if x = (123) then C(x) contains 〈x〉 and 〈(45)〉 and these two sub-
groups have trivial intersection. Therefore 〈x〉× 〈(45)〉 has order 6 and so is
the whole of C(x). Alternatively, put y = (1 2 3)(4 5) and note that x ∈ 〈y〉 so
〈y〉6 C(x). Again, 〈y〉 and C(x) have the same order, so C(x) = 〈y〉.

(d) When x = (1234) then |C(x)|= 4 = |〈x〉|, so C(x) = 〈x〉.

(e) Similarly, when x = (12345) then |C(x)|= 5 = |〈x〉|, so C(x) = 〈x〉.

(f) If x = (123)(45) then the order of x is the lcm of the orders of (123) and (45),
which is 6. Since |C(x)|= 6, we again have C(x) = 〈x〉.

(g) Let x = (12)(34). We know that |C(x)| = 8, and shall demonstrate a subgroup
of S5 which has order 8 and centralizes x.

We know that the group of symmetries of a square is the dihedral group D8
of order 8. Label the square as in the following picture, so that one of the
symmetries is (12)(34).

v v
v v

4 2

31

D8 = {1, (1324), (12)(34), (1423), (13)(24), (14)(23), (12), (34)}

Now, x is in the cyclic group of order 4 generated by (1324), so its centralizer
in D8 contains 〈x〉, which has order 4. It is readily checked that x(12) = (12)x =
(34), so the centralizer of x in D8 is a subgroup of order strictly bigger than 4,
so it must be the whole of D8. But our labelling of the corners of the square
shows D8 as a subgroup of S4, hence as a subgroup of S5, so this is the group
we seek.

The following table summarizes these results.
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x cycle structure
∣∣xS5

∣∣ |C(x)| C(x)
1S5 1, 1, 1, 1, 1 1 120 S5

(12) 1, 1, 1, 2 10 12 〈(12)〉× (S3 on {3,4,5})
(123) 1, 1, 3 20 6 〈(123)〉×〈(45)〉
(1234) 1, 4 30 4 〈(1234)〉
(12345) 5 24 5 〈(12345)〉
(123)(45) 2, 3 20 6 〈(123)(45)〉
(12)(34) 2, 2 15 8 D8 on the labelled square above

Now we find all the normal subgroups of S5. Each normal subgroup consists of
some of the conjugacy classes, always including the class of size 1, and the sum n of
the sizes of the relevant conjugacy classes must divide 120, by Lagrange’s Theorem.

If we include the class of size 24 then (since we always include the class of size 1)
5 divides n, 25 6 n, and n divides 120. The only possibilities are n = 40, n = 60
and n = 120. For n = 40, the subgroup consists of the unique conjugacy classes of
sizes 1, 24 and 15; but this is impossible, because (1 2)(3 4) and (1 2)(3 5) are in the
conjugacy class of size 15 and their product (1 2)(3 4)(1 2)(3 5) = (3 4 5), which is
one of the conjugacy classes of size 20. Similarly, the only possibility for n = 60 is the
union of the unique conjugacy classes of size 1, 24 and 15 together with the conjugacy
class of size 20 consisting of the 3-cycles. These are precisely the even permutations,
giving the normal subgroup A5. Of course, n = 120 gives the normal subgroup S5.

If we do not include the class of size 24 then 5 does not divide n, so n divides 24:
the only possibility is n = 1, corresponding to the normal subgroup {1S5}.

Does S5 have any subgroup of order 40? Suppose that H is such a subgroup. Then
|S5 : H|= 3, so S5 has a normal subgroup K such that K 6 H and S5/K is isomorphic
to a transitive subgroup of S3. We have just seen that the only normal subgroup of S5
with order less than or equal to 40 is just {1S5}, so |S5/K| = 120, so S5/K cannot be
isomorphic to S3, which has order 6. Therefore, S5 has no subgroup of order 40.

A similar argument shows that S5 has no subgroup of order 30.
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Given a subgroup H of a group G, and an element g in G, define

Hg =
{

g−1hg : h ∈ H
}

,

which is called the conjugate of H by g. We also write Hg = g−1Hg.

Theorem (a) Hg is a subgroup of G;

(b) Hg is isomorphic to H;

(c) The map g 7→ πg, where πg:H 7→ Hg for g in G, is an action of G on the set of
subgroups of G.

Proof Exercise.

The stabilizer of H in this action is{
g ∈ G : g−1Hg = H

}
= {g ∈ G : Hg = H} ,

which is called the normalizer of H, written N(H). Then H EN(H) 6 G; in fact, N(H)
is the largest subgroup of G in which H is normal. If H E G then N(H) = G. By the
Orbit-Stabilizer Theorem, the number of conjugates of H in G is equal to |G : N(H)|.

Theorem If α and β are in the same orbit of some action π of a group G, then Gβ is
conjugate to Gα. More precisely, if απg = β then Gβ = Gg

α.

Proof Suppose that απg = β. Put H = Gα. Then

x ∈ Hg ⇒ x = g−1hg for some h with απh = α

⇒ βπx = βπg−1hg = βπ
−1
g πhπg = απhπg = απg = β

⇒ x ∈ Gβ.

This shows that Hg ⊆ Gβ. Conversely,

x ∈ Gβ ⇒ βπx = β

⇒ απgπx = απg

⇒ απgπxπ
−1
g = α

⇒ απgxg−1 = α

⇒ gxg−1 ∈ H
⇒ x = g−1gxg−1g ∈ Hg.

This shows that Gβ ⊆ Hg. Hence Gβ = Hg. �
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Theorem Given a subgroup H of a finite group G, consider the action of H on the
right cosets of H in G, acting by right multiplication. The coset Hg is a fixed point
(that is, in an orbit of size 1) if and only if g ∈ N(H).

Proof Write α = H and β = Hg. Then

Gα = {x ∈ G : Hx = H}= H,

so Gβ = Hg, by the preceding theorem. Then Hβ = {x ∈ H : βh = β} = Gβ ∩H =
Hg∩H. Therefore

β is a fixed point for the action of H ⇐⇒
∣∣H : Hβ

∣∣ = 1
⇐⇒ Hβ = H
⇐⇒ Hg∩H = H
⇐⇒ H ⊆ Hg.

If g ∈ N(H) then Hg = H so Hg∩H = H so β is a fixed point. Conversely, if β is a
fixed point then H ⊆ Hg. Conjugating by g again gives Hg ⊆ Hg2

. Continuing like
this gives Hgm ⊆ Hgm+1

for all positive integers m. If G is finite then there is some
positive integer n such that gn = 1G, so Hgn−1 ⊆ H1G = H. This gives the chain

H ⊆ Hg ⊆ Hg2
⊆ ·· · ⊆ Hgn−1

⊆ H.

If a chain of inequalities begins and ends with the same thing then all the terms must
be equal, so H = Hg, which implies that g ∈ N(H). �

There are some infinite groups for which there is a subgroup H and an element g
such that

H & Hg & Hg2
& · · ·& Hgn−1

& Hgn
& · · · .

In any such group, the “only if” part of the theorem is not true.
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