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Group actions

Definition Given a group G, an action of G on a set Q is a homomorphism from G
into the group of all permutations of €.

We usually write the homomorphism as 7, and g7 as T, so T, is a permutation
of Q for all g in G. It is usually easy to see that each T, is a function from Q to itself.
Then being an action means that

T, is a permutation forall gin G (1)

and
T T, = Tgp forall g, hin G. )

In particular, putting &7 = 15 in (2) gives
MM, = Mg for all g in G.

Since T, is a permutation (by (1)), it is invertible, and so

T, 1s the identity permutation of €. 3)
Thus (1) and (2) imply (2) and (3). Conversely, if (2) and (3) hold and g € G then

TeT,-1 = T, = identity permutation of €,

SO Te is invertible and therefore is a permutation. (Incidentally, this also shows that
(ng)_1 = Tt,-1.) This shows that conditions (2) and (3) imply (1) and (2). It is usually
easier to check condition (3) than condition (1).

The kernel of &t is called the kernel of the action. We say that G acts faithfully on
Qif ker(w) = {1s}.



Example Put Q = G. For g in G, define 7, by
Xy = Xg for x in Q.
Then
Xm, =xlg=x for all x in G,

so Ty, is the identity permutation of €, and
X, = XgMy = Xgh = XTgp,

for all x in Q, so T, = gy, for all g, 4 in G, so this is an action. It is called the right
regular action of G on itself. It is faithful because if 7, is the identity permutation
then xm, =xsoxg =xso g = lg.

Cayley’s Theorem Every group is isomorphic to a group of permutations.

Proof Given a group G, let T be its right regular action. Then Im(x) is a group of
permutations. By the First Isomorphism Theorem, G/ ker(n) = Im(m). But ker(w) =
{10} and G/{lc} =G. [

Given an action T of G on Q, write o ~ B (for o, B in Q) if there is some g in G
with oy = f.

Lemma ~ is an equivalence relation on Q.

Proof (a) my, is the identity permutation, so oy, = o for all o/ in Q, so o ~ o for
all ovin Q. Thus ~ is reflexive.

(b) If o ~ B then there is some g in G with amy, = B. Now, (1)~

pr,1 = B(m,) ! = Omgn;l = a, so B ~ a. Therefore ~ is symmetric.

= Ttgq , SO

(c) If oo~ B and B ~ vy then there are g, h in G with amg = B and Bm;, =7y. Then
Y = BTy, = O, = ATy, because T is a homomorphism, so o ~ 7. Therefore
~ 1is transitive. [J

Definition The equivalence classes of ~ are called orbits. The orbit containing o is
written o°. If there is only one orbit then G is transitive on Q.

Warning: note the two different meanings of the word transitive!
The right regular action is transitive because, given any x, y in G, we can put
g =x" 'y and then X = XxXg = xxly=y,s0x~y.



Example Let G = GL(2,3) = {all invertible 2 x 2 matrices with entries in F3}. Here
[F3 denotes the finite field with 3 elements, which is just the integers modulo 3. The
first row of such a matrix can be any ordered pair of elements from 3 except (0,0),
so there are 32 — 1 = 8 possibilities. The second row can be any ordered pair which
is not a scalar multiple of the first row, so there are 32-3=6 possibilities. Hence
|IGL(2,3)] =8 x 6 =48.

Let Q = IF2, which is the set of all row vectors with 2 coordinates in IF5. For ovin Q
and g in G, define am, = 0ig, which is interpreted as the product of the row vector o
with the matrix g, and hence is another row vector. The matrix g is invertible, so T,
is a permutation. Moreover, 0., = (0ig)h = 0i(gh) by the usual rules for matrix
multiplication, so T is an action.

|Q| = 3% = 9. Label the nine row vectors as

(0,1) (0,2) (1,0) (2,0) (1,1) (2 2) (1,2) (2,1) (0,0)
1 2 3 4 5

7 8 9.
1 2
Suppose that g = [ 0 1 } Then (1,0)g = [ } (1,2) so 3mg = 7. Sim-
ilarly, (0,0)g = (0,0) so 91, =9, and (1,2) { 0 1 } = (1,1) so 7my = 5. In fact,
g = (375)(486)(1)(2)(9).
Note that (0,0)g = (0,0) for all g in G, so {9} is a whole orbit.

Definition Given an action 7 of a group G on Q, and an element o of Q, the stabilizer
of ais {g €eG:.an, = oc}, written G.

Orbit-Stabilizer Theorem (a) G, is a subgroup of G.

(b) There is a bijection between the orbit a.® containing o and the set of right cosets
of Gy in G.

Proof (a) (i) m is the identity permutation of Q so am;, = @, so 1g € Gg, S0
G, is not empty.

(ii) Suppose that g, & are in Gg. Then amy = 0, so o = a(T,) !

because 7 is a homomorphism, so

= OCTEg—l,

OTy-1, = OT-1T, because T is a homomorphism,
= o, = .

Therefore g~ 'h € G,
Hence Gy < G.



(b) Suppose that B € &, so that there is some g in G with orn, = B. If 1 € Gg then
OTtyg = O, T, = AT, = B, so everything in the right coset Gog maps o to 3. Put
C(B) = {x € G: an, = B}. We have just shown that Gog C C(B). Conversely,
if am, = P for some x in G then Oy 1 = O T, 1 = omxng’l = Bng’l = SO
xg~! € Gy 50 x € Ggg. This shows that C(B) C Gyg. Hence C(B) = Gog. There
is a bijection between the points B in the orbit &¢ and the sets C(pB), because
defines C(B) while any x in C(B) defines B as am,. O

Corollary The size of the orbit o is equal to the index of G, in G; in particular, if G
is finite then |o®| = |G| /|Gyl

Example In GL(2,3), put o = (1,0) and g = {2‘ Z ].Then

o, = (1,0) {Z‘ Z} — (a,b),

so the orbit of o contains all the non-zero vectors, so ‘OLG} = 8. Also
g€ Gy = amg=0o < (a,b)=(1,0)

and there are six matrices in GL(2,3) with first row (1,0), so |G| = 6. Then we have
|0%| x |Gy| = 8 x 6 =48 = |G|, in accordance with the theorem.

Similarly, if B = (0,1) then Brg = (¢,d) so g € Gg <= (c,d) = (0,
is the identity then 1, € Go N Gp: therefore (a,b) = (1,0) and (c,d) = (0,

). If m,
)sog=

{ 10 } = 1¢. This shows that ker(m) = {15}, so this action w is faithful, so GL(2,3)

1

1
01

is isomorphic to a subgroup of Sy.

Example Let G be the group of all 3-dimensional rotational symmetries of a cube.
Consider elements of G as permutations of the 6 faces of the cube. Let o be one face.
Then G, consists of rotations about the axis perpendicular to the centre of o, through
multiples of 27/4, so |G| = 4. Also, G is transitive on the faces, so |a%| = 6. Hence
|G| =6x4=24.

Cauchy’s Theorem If H is a finite group and |H| is divisible by a prime p, then H
contains an element of order p.

Proof Let Q be the set of p-tuples
{(hi,h2,....,hp) hi€ Hfori=1,...,pand hihy...h, =1y }.
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In such a p-tuple, h, = (hihy...h,1)~", 50 |Q| = |H|P~.
Let g be the following permutation of Q:

(hi,ha, ... hy)g = (hayhs,... hp ).

Note that if hihy ... h, = 1y then hy 'hyhy ... hyhy = hy '1ghy = 1y s0 hohs ... hyhy =
1y and so g really is a permutation of Q. Then g? is the identity permutation but g is
not the identity. Hence the order of g is not 1, and it divides p, which is prime, so the
order of g is p.

Let G = (g), which has order p. By the Orbit-Stabilizer Theorem, every orbit of
G on Q has size dividing p, so size either 1 or p. Suppose that there are m orbits of
size 1 and my orbits of size p. Then

mi+map=1|Q|=|HP!,

which is divisible by p, because p divides |H|. Hence p divides m;.

Any orbit of size 1 contains a single p-tuple of the form (A, A, ..., h) with b’ = 1g.
There is at least one such orbit: {(1y,1y,...,1g)}. Therefore m; # 0. Hence m; > p.
So there must be at least p — 1 other orbits of size 1. If {(h,h,...,h)} is any one of
these other orbits then 4 is an element of order p. [

Given an action 7 of a group G on a set £, an equivalence relation ~ on Q is
called a G-equivalence if & ~ B <= amg ~ PBn, for all o, B in  and all g in G.
Given such a G-equivalence, let Q' be the set of equivalence classes of ~, and define
an action p of G on Q' by [a]p, = [0m,]. We need to show that p really is an action.
Now, [o] = [B] = o~ B = ang = P, —> [ome] = [Brg] = [a]pg = [B]ps, sO
pg is well defined. Also [ap1,; = [amy,;] = [a] for all o in Q, so py,; is the identity
permutation of Q'. Finally, for g, & in G:

[o]pgpn = [amglpn = [0y
= [0y, because T is an action,
= [a] pgh»
so p is an action.

Example Let 7 be the right regular action of G on itself, and let H < G. For x, y in G,
x~gy <= yx~! € H. Given gin G,

XTlg ~R YTy X8 ~RY8

<~

= (g)xg) ' €H
— yggfle1 eH
= yx_] €H

<~

X~RY,

(91



so ~g is a G-equivalence. The equivalence classes of ~g are the right cosets of H
in G, so there is an action p of G on these right cosets defined by

(Hx)pg = [x]pg = [xTg| = [xg] = Hxg.

This action is transitive, because, given any two right cosets Hx and Hy, we have
Hy = (Hx)p, with g =x"y.

Theorem If a group G has a subgroup H of index n then there is a normal subgroup
K of G such that K < H and G/K is isomorphic to a transitive subgroup of S,,.

Proof Let p be the above action of G on the right cosets of H in G. Then Im(p) is a
transitive subgroup of S,,.

Let K = ker(p). By the First Isomorphism Theorem, G/K = Im(p).

If k € K then Hxpy = Hx for all x. In particular, Hpy = H, so Hk = H so k € H.
Therefore K < H. U

This prompts a remark about subsets of a subgroup. Suppose that H is a subgroup
of a group G and K C H. If K is a subgroup of G then it is a subgroup of H. If K is a
subgroup of H then it is a subgroup of G. If K is a normal subgroup of G then itis a
normal subgroup of H. However, if K is a normal subgroup of H then it may not be a
normal subgroup of G.

Example Let G = GL(2,3) and Q consist of the eight non-zero vectors in F3. Let
be the action defined by o, = og for o in Q and g in G.

Define o ~ B if there is a non-zero scalar A in F3 (so A = 1 or A = 2) such that
o = AP. This is a G-equivalence because

(AB)my = (AB)g = M(Bg) = A(Bm,)

since A is a scalar. There are four equivalence classes:

} o=

A
} = B
p = C
} =D
A

Let K = ker(p). Iszlorkz2then[0
) =

g= [j b} € K. Then Ap, = A so (a,b) = (1,0) or (2,0) so b = 0. Similarly,

g } € K. Conversely, suppose that
d 0
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Bpy, = B so (c¢,d) = (0,1) or (0,2) so ¢ =0. Then Cpg = [(a,d)] =C so a =d.

Therefore
10 20
={[s V][5 3]}

and |K| = 2. Then |G/K| = |G|/ |K| =48/2 =24 = |S4|, so G/K = S4. In other
words, we get all permutations of {A,B,C,D}.

We know that S4 has a unique subgroup of index 2: itis A4. By the Correspondence
Theorem, GL(2,3) has a unique subgroup of index 2 which contains K. We also
know that GL(2,3) has a subgroup SL(2,3), which is the kernel of the determinant
homomorphism. The determinant of an element of GL(2,3) can be either of the two
non-zero scalars in [F3, so SL(2,3) has index 2 in GL(2,3), by the First Isomorphism
Theorem. Inspection shows that both elements of K have determinant 1, so K <
SL(2,3). Therefore SL(2,3) is this unique subgroup of GL(2,3) which contains K
and has order 24.

GL(2,3) @ ® S
SL(2,3) @ o Ay
K e o {lg}

{loLes)} @

Theorem (wrongly attributed to Burnside) Let w be an action of a finite group G
on a set Q. For g in G, put f(g \{oc €Q:am, = Oc}| Then the number of orbits
of G on Q is equal to

P

geG

Proof Letm = |{(a,g) : € Q, g € G, amg = a}|. Count m in two ways:

m=Y f(g) =) |Gql.

geG (0719

Let I C Q be any orbit. By the Orbit-Stabilizer Theorem, |G| = |G|/ |T| for each

ain I, and so
Y 1Gd =Y =

ocl’ oel’

1G] _ 1y |Gl

2 gl
o



Therefore
Z |G| = |G| x number of orbits

acQ

and so | .
Gl Z flg) = Gl Z |G| = number of orbits. [J
geG acQ

Example Take Q = {1,2,3,4,5,6} and let G = {1,a,b,c} where a = (12)(34), b =
(34)(56) and ¢ = (12)(56). Then f(1) =6 and f(a) = f(b) = f(c) =2, s0

1
the number of orbits = 4_1(6+2+ 2+2)=3,

which is correct, because the orbits are {1,2}, {3,4} and {5,6}.

Note: any group {1,a,b,c} in whicha®> =b*> =c?>=1,ab=ba=c,ac=ca=b
and bc = cb = a 1s called a Klein group. Any two such groups are isomorphic to each
other.



