

MAS 305

Algebraic Structures II

Notes 4 Autumn 2006

Group actions

Definition Given a group G, an *action* of G on a set Ω is a homomorphism from G into the group of all permutations of Ω .

We usually write the homomorphism as π , and $g\pi$ as π_g , so π_g is a permutation of Ω for all g in G. It is usually easy to see that each π_g is a function from Ω to itself. Then being an action means that

$$\pi_g$$
 is a permutation for all g in G (1)

and

$$\pi_g \pi_h = \pi_{gh}$$
 for all g, h in G . (2)

In particular, putting $h = 1_G$ in (2) gives

$$\pi_g \pi_{1_G} = \pi_g$$
 for all g in G .

Since π_g is a permutation (by (1)), it is invertible, and so

$$\pi_{1_G}$$
 is the identity permutation of Ω . (3)

Thus (1) and (2) imply (2) and (3). Conversely, if (2) and (3) hold and $g \in G$ then

$$\pi_g \pi_{g^{-1}} = \pi_{1_G} = \text{identity permutation of } \Omega,$$

so π_g is invertible and therefore is a permutation. (Incidentally, this also shows that $(\pi_g)^{-1} = \pi_{g^{-1}}$.) This shows that conditions (2) and (3) imply (1) and (2). It is usually easier to check condition (3) than condition (1).

The kernel of π is called the *kernel of the action*. We say that G acts *faithfully* on Ω if $\ker(\pi) = \{1_G\}$.

Example Put $\Omega = G$. For g in G, define π_g by

$$x\pi_g = xg$$
 for x in Ω .

Then

$$x\pi_{1_G} = x1_G = x$$
 for all x in G ,

so π_{1_G} is the identity permutation of Ω , and

$$x\pi_{g}\pi_{h} = xg\pi_{h} = xgh = x\pi_{gh}$$

for all x in Ω , so $\pi_g \pi_h = \pi_{gh}$ for all g, h in G, so this is an action. It is called the *right* regular action of G on itself. It is faithful because if π_g is the identity permutation then $x\pi_g = x$ so x = x so x =

Cayley's Theorem Every group is isomorphic to a group of permutations.

Proof Given a group G, let π be its right regular action. Then $\text{Im}(\pi)$ is a group of permutations. By the First Isomorphism Theorem, $G/\ker(\pi) \cong \text{Im}(\pi)$. But $\ker(\pi) = \{1_G\}$ and $G/\{1_G\} \cong G$. \square

Given an action π of G on Ω , write $\alpha \sim \beta$ (for α , β in Ω) if there is some g in G with $\alpha \pi_g = \beta$.

Lemma \sim is an equivalence relation on Ω .

Proof (a) π_{1_G} is the identity permutation, so $\alpha \pi_{1_G} = \alpha$ for all α in Ω , so $\alpha \sim \alpha$ for all α in Ω . Thus \sim is reflexive.

- (b) If $\alpha \sim \beta$ then there is some g in G with $\alpha \pi_g = \beta$. Now, $(\pi_g)^{-1} = \pi_{g^{-1}}$, so $\beta \pi_{g^{-1}} = \beta(\pi_g)^{-1} = \alpha \pi_g \pi_g^{-1} = \alpha$, so $\beta \sim \alpha$. Therefore \sim is symmetric.
- (c) If $\alpha \sim \beta$ and $\beta \sim \gamma$ then there are g, h in G with $\alpha \pi_g = \beta$ and $\beta \pi_h = \gamma$. Then $\gamma = \beta \pi_h = \alpha \pi_g \pi_h = \alpha \pi_{gh}$, because π is a homomorphism, so $\alpha \sim \gamma$. Therefore \sim is transitive. \square

Definition The equivalence classes of \sim are called *orbits*. The orbit containing α is written α^G . If there is only one orbit then G is *transitive* on Ω .

Warning: note the two different meanings of the word transitive!

The right regular action is transitive because, given any x, y in G, we can put $g = x^{-1}y$ and then $x\pi_g = xg = xx^{-1}y = y$, so $x \sim y$.

Example Let $G = GL(2,3) = \{$ all invertible 2×2 matrices with entries in $\mathbb{F}_3 \}$. Here \mathbb{F}_3 denotes the finite field with 3 elements, which is just the integers modulo 3. The first row of such a matrix can be any ordered pair of elements from \mathbb{F}_3 except (0,0), so there are $3^2 - 1 = 8$ possibilities. The second row can be any ordered pair which is not a scalar multiple of the first row, so there are $3^2 - 3 = 6$ possibilities. Hence $|GL(2,3)| = 8 \times 6 = 48$.

Let $\Omega = \mathbb{F}^2$, which is the set of all row vectors with 2 coordinates in \mathbb{F}_3 . For α in Ω and g in G, define $\alpha \pi_g = \alpha g$, which is interpreted as the product of the row vector α with the matrix g, and hence is another row vector. The matrix g is invertible, so π_g is a permutation. Moreover, $\alpha \pi_g \pi_h = (\alpha g)h = \alpha(gh)$ by the usual rules for matrix multiplication, so π is an action.

 $|\Omega| = 3^2 = 9$. Label the nine row vectors as

Suppose that
$$g = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
. Then $(1,0)g = (1,0)\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = (1,2)$ so $3\pi_g = 7$. Similarly, $(0,0)g = (0,0)$ so $9\pi_g = 9$, and $(1,2)\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = (1,1)$ so $7\pi_g = 5$. In fact, $\pi_g = (375)(486)(1)(2)(9)$.

Note that (0,0)g = (0,0) for all g in G, so $\{9\}$ is a whole orbit.

Definition Given an action π of a group G on Ω , and an element α of Ω , the *stabilizer* of α is $\{g \in G : \alpha \pi_g = \alpha\}$, written G_{α} .

Orbit-Stabilizer Theorem (a) G_{α} is a subgroup of G.

- (b) There is a bijection between the orbit α^G containing α and the set of right cosets of G_{α} in G.
- **Proof** (a) (i) π_{1_G} is the identity permutation of Ω so $\alpha \pi_{1_G} = \alpha$, so $1_G \in G_{\alpha}$, so G_{α} is not empty.
 - (ii) Suppose that g, h are in G_{α} . Then $\alpha \pi_g = \alpha$, so $\alpha = \alpha(\pi_g)^{-1} = \alpha \pi_{g^{-1}}$, because π is a homomorphism, so

$$\alpha \pi_{g^{-1}h} = \alpha \pi_{g^{-1}} \pi_h$$
, because π is a homomorphism,
= $\alpha \pi_h = \alpha$.

Therefore $g^{-1}h \in G_{\alpha}$.

Hence $G_{\alpha} \leqslant G$.

(b) Suppose that $\beta \in \alpha^G$, so that there is some g in G with $\alpha \pi_g = \beta$. If $h \in G_\alpha$ then $\alpha \pi_{hg} = \alpha \pi_h \pi_g = \alpha \pi_g = \beta$, so everything in the right coset $G_\alpha g$ maps α to β . Put $C(\beta) = \{x \in G : \alpha \pi_x = \beta\}$. We have just shown that $G_\alpha g \subseteq C(\beta)$. Conversely, if $\alpha \pi_x = \beta$ for some x in G then $\alpha \pi_{xg^{-1}} = \alpha \pi_x \pi_{g^{-1}} = \alpha \pi_x \pi_g^{-1} = \beta \pi_g^{-1} = \alpha$ so $xg^{-1} \in G_\alpha$ so $x \in G_\alpha g$. This shows that $C(\beta) \subseteq G_\alpha g$. Hence $C(\beta) = G_\alpha g$. There is a bijection between the points β in the orbit α^G and the sets $C(\beta)$, because β defines $C(\beta)$ while any x in $C(\beta)$ defines β as $\alpha \pi_x$. \square

Corollary The size of the orbit α^G is equal to the index of G_{α} in G; in particular, if G is finite then $|\alpha^G| = |G|/|G_{\alpha}|$.

Example In GL(2,3), put $\alpha = (1,0)$ and $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then

$$\alpha \pi_g = (1,0) \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = (a,b),$$

so the orbit of α contains all the non-zero vectors, so $|\alpha^G| = 8$. Also

$$g \in G_{\alpha} \iff \alpha \pi_g = \alpha \iff (a,b) = (1,0)$$

and there are six matrices in GL(2,3) with first row (1,0), so $|G_{\alpha}|=6$. Then we have $|\alpha^G|\times |G_{\alpha}|=8\times 6=48=|G|$, in accordance with the theorem.

Similarly, if $\beta = (0,1)$ then $\beta \pi_g = (c,d)$ so $g \in G_{\beta} \iff (c,d) = (0,1)$. If π_g is the identity then $\pi_g \in G_{\alpha} \cap G_{\beta}$: therefore (a,b) = (1,0) and (c,d) = (0,1) so $g = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1_G$. This shows that $\ker(\pi) = \{1_G\}$, so this action π is faithful, so $\operatorname{GL}(2,3)$ is isomorphic to a subgroup of S_9 .

Example Let G be the group of all 3-dimensional rotational symmetries of a cube. Consider elements of G as permutations of the 6 faces of the cube. Let α be one face. Then G_{α} consists of rotations about the axis perpendicular to the centre of α , through multiples of $2\pi/4$, so $|G_{\alpha}| = 4$. Also, G is transitive on the faces, so $|\alpha^G| = 6$. Hence $|G| = 6 \times 4 = 24$.

Cauchy's Theorem If H is a finite group and |H| is divisible by a prime p, then H contains an element of order p.

Proof Let Ω be the set of *p*-tuples

$$\{(h_1, h_2, \dots, h_p) : h_i \in H \text{ for } i = 1, \dots, p \text{ and } h_1 h_2 \dots h_p = 1_H \}.$$

In such a *p*-tuple, $h_p = (h_1 h_2 \dots h_{p-1})^{-1}$, so $|\Omega| = |H|^{p-1}$. Let *g* be the following permutation of Ω :

$$(h_1,h_2,\ldots,h_p)g=(h_2,h_3,\ldots,h_p,h_1).$$

Note that if $h_1h_2...h_p = 1_H$ then $h_1^{-1}h_1h_2...h_ph_1 = h_1^{-1}1_Hh_1 = 1_H$ so $h_2h_3...h_ph_1 = 1_H$ and so g really is a permutation of Ω . Then g^p is the identity permutation but g is not the identity. Hence the order of g is not 1, and it divides p, which is prime, so the order of g is p.

Let $G = \langle g \rangle$, which has order p. By the Orbit-Stabilizer Theorem, every orbit of G on Ω has size dividing p, so size either 1 or p. Suppose that there are m_1 orbits of size 1 and m_2 orbits of size p. Then

$$m_1 + m_2 p = |\Omega| = |H|^{p-1}$$
,

which is divisible by p, because p divides |H|. Hence p divides m_1 .

Any orbit of size 1 contains a single p-tuple of the form (h, h, ..., h) with $h^p = 1_H$. There is at least one such orbit: $\{(1_H, 1_H, ..., 1_H)\}$. Therefore $m_1 \neq 0$. Hence $m_1 \geq p$. So there must be at least p-1 other orbits of size 1. If $\{(h, h, ..., h)\}$ is any one of these other orbits then h is an element of order p. \square

Given an action π of a group G on a set Ω , an equivalence relation \sim on Ω is called a G-equivalence if $\alpha \sim \beta \iff \alpha \pi_g \sim \beta \pi_g$ for all α , β in Ω and all g in G. Given such a G-equivalence, let Ω' be the set of equivalence classes of \sim , and define an action ρ of G on Ω' by $[\alpha]\rho_g = [\alpha \pi_g]$. We need to show that ρ really is an action. Now, $[\alpha] = [\beta] \implies \alpha \sim \beta \implies \alpha \pi_g = \beta \pi_g \implies [\alpha \pi_g] = [\beta \pi_g] \implies [\alpha]\rho_g = [\beta]\rho_g$, so ρ_g is well defined. Also $[\alpha]\rho_{1_G} = [\alpha \pi_{1_G}] = [\alpha]$ for all α in Ω , so ρ_{1_G} is the identity permutation of Ω' . Finally, for g, h in G:

$$\begin{split} [\alpha] \rho_g \rho_h &= [\alpha \pi_g] \rho_h &= [\alpha \pi_g \pi_h] \\ &= [\alpha \pi_{gh}], \qquad \text{because π is an action,} \\ &= [\alpha] \rho_{gh}, \end{split}$$

so ρ is an action.

Example Let π be the right regular action of G on itself, and let $H \le G$. For x, y in G, $x \sim_R y \iff yx^{-1} \in H$. Given g in G,

$$x\pi_g \sim_R y\pi_g \iff xg \sim_R yg$$

$$\iff (yg)(xg)^{-1} \in H$$

$$\iff ygg^{-1}x^{-1} \in H$$

$$\iff yx^{-1} \in H$$

$$\iff x \sim_R y,$$

so \sim_R is a G-equivalence. The equivalence classes of \sim_R are the right cosets of H in G, so there is an action ρ of G on these right cosets defined by

$$(Hx)\rho_g = [x]\rho_g = [x\pi_g] = [xg] = Hxg.$$

This action is transitive, because, given any two right cosets Hx and Hy, we have $Hy = (Hx)\rho_g$ with $g = x^{-1}y$.

Theorem If a group G has a subgroup H of index n then there is a normal subgroup K of G such that $K \leq H$ and G/K is isomorphic to a transitive subgroup of S_n .

Proof Let ρ be the above action of G on the right cosets of H in G. Then $Im(\rho)$ is a transitive subgroup of S_n .

Let $K = \ker(\rho)$. By the First Isomorphism Theorem, $G/K \cong \operatorname{Im}(\rho)$.

If $k \in K$ then $Hx\rho_k = Hx$ for all x. In particular, $H\rho_k = H$, so Hk = H so $k \in H$. Therefore $K \leq H$.

This prompts a remark about subsets of a subgroup. Suppose that H is a subgroup of a group G and $K \subseteq H$. If K is a subgroup of G then it is a subgroup of G, then it is a subgroup of G, then it is a subgroup of G, then it is a normal subgroup of G, then it is a normal subgroup of G. However, if G is a normal subgroup of G then it may not be a normal subgroup of G.

Example Let G = GL(2,3) and Ω consist of the eight non-zero vectors in \mathbb{F}_3^2 . Let π be the action defined by $\alpha \pi_g = \alpha g$ for α in Ω and g in G.

Define $\alpha \sim \beta$ if there is a non-zero scalar λ in \mathbb{F}_3 (so $\lambda = 1$ or $\lambda = 2$) such that $\alpha = \lambda \beta$. This is a *G*-equivalence because

$$(\lambda \beta)\pi_g = (\lambda \beta)g = \lambda(\beta g) = \lambda(\beta \pi_g)$$

since λ is a scalar. There are four equivalence classes:

$$\{(1,0), (2,0)\} = A$$

$$\{(0,1), (0,2)\} = B$$

$$\{(1,1), (2,2)\} = C$$

$$\{(1,2), (2,1)\} = D.$$

Let
$$K = \ker(\rho)$$
. If $\lambda = 1$ or $\lambda = 2$ then $\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \in K$. Conversely, suppose that $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in K$. Then $A\rho_g = A$ so $(a,b) = (1,0)$ or $(2,0)$ so $b = 0$. Similarly,

 $B\rho_g = B$ so (c,d) = (0,1) or (0,2) so c = 0. Then $C\rho_g = [(a,d)] = C$ so a = d. Therefore

$$K = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \right\}$$

and |K| = 2. Then $|G/K| = |G|/|K| = 48/2 = 24 = |S_4|$, so $G/K \cong S_4$. In other words, we get all permutations of $\{A, B, C, D\}$.

We know that S_4 has a unique subgroup of index 2: it is A_4 . By the Correspondence Theorem, GL(2,3) has a unique subgroup of index 2 which contains K. We also know that GL(2,3) has a subgroup SL(2,3), which is the kernel of the determinant homomorphism. The determinant of an element of GL(2,3) can be either of the two non-zero scalars in \mathbb{F}_3 , so SL(2,3) has index 2 in GL(2,3), by the First Isomorphism Theorem. Inspection shows that both elements of K have determinant 1, so $K \leq SL(2,3)$. Therefore SL(2,3) is this unique subgroup of GL(2,3) which contains K and has order 24.

Theorem (wrongly attributed to Burnside) Let π be an action of a finite group G on a set Ω . For g in G, put $f(g) = \left|\left\{\alpha \in \Omega : \alpha \pi_g = \alpha\right\}\right|$. Then the number of orbits of G on Ω is equal to

$$\frac{1}{|G|} \sum_{g \in G} f(g).$$

Proof Let $m = |\{(\alpha, g) : \alpha \in \Omega, g \in G, \alpha \pi_g = \alpha\}|$. Count m in two ways:

$$m = \sum_{g \in G} f(g) = \sum_{\alpha \in \Omega} |G_{\alpha}|.$$

Let $\Gamma \subseteq \Omega$ be any orbit. By the Orbit-Stabilizer Theorem, $|G_{\alpha}| = |G| / |\Gamma|$ for each α in Γ , and so

$$\sum_{\alpha \in \Gamma} |G_{\alpha}| = \sum_{\alpha \in \Gamma} \frac{|G|}{|\Gamma|} = |\Gamma| \times \frac{|G|}{|\Gamma|} = |G|.$$

Therefore

$$\sum_{lpha\in\Omega}|G_lpha|=|G| imes ext{number of orbits}$$

and so

$$\frac{1}{|G|} \sum_{g \in G} f(g) = \frac{1}{|G|} \sum_{\alpha \in \Omega} |G_{\alpha}| = \text{number of orbits.} \quad \Box$$

Example Take $\Omega = \{1, 2, 3, 4, 5, 6\}$ and let $G = \{1, a, b, c\}$ where a = (12)(34), b = (34)(56) and c = (12)(56). Then f(1) = 6 and f(a) = f(b) = f(c) = 2, so

the number of orbits =
$$\frac{1}{4}(6+2+2+2) = 3$$
,

which is correct, because the orbits are $\{1,2\}$, $\{3,4\}$ and $\{5,6\}$.

Note: any group $\{1, a, b, c\}$ in which $a^2 = b^2 = c^2 = 1$, ab = ba = c, ac = ca = b and bc = cb = a is called a *Klein* group. Any two such groups are isomorphic to each other.