
MAS 305 Algebraic Structures II

Notes 4 Autumn 2006

Group actions
Definition Given a group G, an action of G on a set Ω is a homomorphism from G
into the group of all permutations of Ω.

We usually write the homomorphism as π, and gπ as πg, so πg is a permutation
of Ω for all g in G. It is usually easy to see that each πg is a function from Ω to itself.
Then being an action means that

πg is a permutation for all g in G (1)

and
πgπh = πgh for all g, h in G. (2)

In particular, putting h = 1G in (2) gives

πgπ1G = πg for all g in G.

Since πg is a permutation (by (1)), it is invertible, and so

π1G is the identity permutation of Ω. (3)

Thus (1) and (2) imply (2) and (3). Conversely, if (2) and (3) hold and g ∈ G then

πgπg−1 = π1G = identity permutation of Ω,

so πg is invertible and therefore is a permutation. (Incidentally, this also shows that
(πg)−1 = πg−1 .) This shows that conditions (2) and (3) imply (1) and (2). It is usually
easier to check condition (3) than condition (1).

The kernel of π is called the kernel of the action. We say that G acts faithfully on
Ω if ker(π) = {1G}.
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Example Put Ω = G. For g in G, define πg by

xπg = xg for x in Ω.

Then
xπ1G = x1G = x for all x in G,

so π1G is the identity permutation of Ω, and

xπgπh = xgπh = xgh = xπgh,

for all x in Ω, so πgπh = πgh for all g, h in G, so this is an action. It is called the right
regular action of G on itself. It is faithful because if πg is the identity permutation
then xπg = x so xg = x so g = 1G.

Cayley’s Theorem Every group is isomorphic to a group of permutations.

Proof Given a group G, let π be its right regular action. Then Im(π) is a group of
permutations. By the First Isomorphism Theorem, G/ker(π) ∼= Im(π). But ker(π) =
{1G} and G/{1G} ∼= G. �

Given an action π of G on Ω, write α ∼ β (for α, β in Ω) if there is some g in G
with απg = β.

Lemma ∼ is an equivalence relation on Ω.

Proof (a) π1G is the identity permutation, so απ1G = α for all α in Ω, so α ∼ α for
all α in Ω. Thus ∼ is reflexive.

(b) If α ∼ β then there is some g in G with απg = β. Now, (πg)−1 = πg−1 , so
βπg−1 = β(πg)−1 = απgπ−1

g = α, so β ∼ α. Therefore ∼ is symmetric.

(c) If α ∼ β and β ∼ γ then there are g, h in G with απg = β and βπh = γ. Then
γ = βπh = απgπh = απgh, because π is a homomorphism, so α ∼ γ. Therefore
∼ is transitive. �

Definition The equivalence classes of ∼ are called orbits. The orbit containing α is
written αG. If there is only one orbit then G is transitive on Ω.

Warning: note the two different meanings of the word transitive!
The right regular action is transitive because, given any x, y in G, we can put

g = x−1y and then xπg = xg = xx−1y = y, so x ∼ y.
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Example Let G = GL(2,3) = {all invertible 2×2 matrices with entries in F3}. Here
F3 denotes the finite field with 3 elements, which is just the integers modulo 3. The
first row of such a matrix can be any ordered pair of elements from F3 except (0,0),
so there are 32− 1 = 8 possibilities. The second row can be any ordered pair which
is not a scalar multiple of the first row, so there are 32 − 3 = 6 possibilities. Hence
|GL(2,3)|= 8×6 = 48.

Let Ω = F2, which is the set of all row vectors with 2 coordinates in F3. For α in Ω

and g in G, define απg = αg, which is interpreted as the product of the row vector α

with the matrix g, and hence is another row vector. The matrix g is invertible, so πg
is a permutation. Moreover, απgπh = (αg)h = α(gh) by the usual rules for matrix
multiplication, so π is an action.

|Ω|= 32 = 9. Label the nine row vectors as

(0,1) (0,2) (1,0) (2,0) (1,1) (2,2) (1,2) (2,1) (0,0)
1 2 3 4 5 6 7 8 9.

Suppose that g =
[

1 2
0 1

]
. Then (1,0)g = (1,0)

[
1 2
0 1

]
= (1,2) so 3πg = 7. Sim-

ilarly, (0,0)g = (0,0) so 9πg = 9, and (1,2)
[

1 2
0 1

]
= (1,1) so 7πg = 5. In fact,

πg = (375)(486)(1)(2)(9).
Note that (0,0)g = (0,0) for all g in G, so {9} is a whole orbit.

Definition Given an action π of a group G on Ω, and an element α of Ω, the stabilizer
of α is

{
g ∈ G : απg = α

}
, written Gα.

Orbit-Stabilizer Theorem (a) Gα is a subgroup of G.

(b) There is a bijection between the orbit αG containing α and the set of right cosets
of Gα in G.

Proof (a) (i) π1G is the identity permutation of Ω so απ1G = α, so 1G ∈ Gα, so
Gα is not empty.

(ii) Suppose that g, h are in Gα. Then απg = α, so α = α(πg)−1 = απg−1 ,
because π is a homomorphism, so

απg−1h = απg−1πh, because π is a homomorphism,
= απh = α.

Therefore g−1h ∈ Gα.

Hence Gα 6 G.
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(b) Suppose that β ∈ αG, so that there is some g in G with απg = β. If h ∈ Gα then
απhg = απhπg = απg = β, so everything in the right coset Gαg maps α to β. Put
C(β) = {x ∈ G : απx = β}. We have just shown that Gαg ⊆C(β). Conversely,
if απx = β for some x in G then απxg−1 = απxπg−1 = απxπ−1

g = βπ−1
g = α so

xg−1 ∈Gα so x∈Gαg. This shows that C(β)⊆Gαg. Hence C(β) = Gαg. There
is a bijection between the points β in the orbit αG and the sets C(β), because β

defines C(β) while any x in C(β) defines β as απx. �

Corollary The size of the orbit αG is equal to the index of Gα in G; in particular, if G
is finite then

∣∣αG
∣∣ = |G|/ |Gα|.

Example In GL(2,3), put α = (1,0) and g =
[

a b
c d

]
. Then

απg = (1,0)
[

a b
c d

]
= (a,b),

so the orbit of α contains all the non-zero vectors, so
∣∣αG

∣∣ = 8. Also

g ∈ Gα ⇐⇒ απg = α ⇐⇒ (a,b) = (1,0)

and there are six matrices in GL(2,3) with first row (1,0), so |Gα|= 6. Then we have∣∣αG
∣∣×|Gα|= 8×6 = 48 = |G|, in accordance with the theorem.
Similarly, if β = (0,1) then βπg = (c,d) so g ∈ Gβ ⇐⇒ (c,d) = (0,1). If πg

is the identity then πg ∈ Gα∩Gβ: therefore (a,b) = (1,0) and (c,d) = (0,1) so g =[
1 0
0 1

]
= 1G. This shows that ker(π) = {1G}, so this action π is faithful, so GL(2,3)

is isomorphic to a subgroup of S9.

Example Let G be the group of all 3-dimensional rotational symmetries of a cube.
Consider elements of G as permutations of the 6 faces of the cube. Let α be one face.
Then Gα consists of rotations about the axis perpendicular to the centre of α, through
multiples of 2π/4, so |Gα|= 4. Also, G is transitive on the faces, so

∣∣αG
∣∣ = 6. Hence

|G|= 6×4 = 24.

Cauchy’s Theorem If H is a finite group and |H| is divisible by a prime p, then H
contains an element of order p.

Proof Let Ω be the set of p-tuples{
(h1,h2, . . . ,hp) : hi ∈ H for i = 1, . . . , p and h1h2 . . .hp = 1H

}
.
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In such a p-tuple, hp = (h1h2 . . .hp−1)−1, so |Ω|= |H|p−1.
Let g be the following permutation of Ω:

(h1,h2, . . . ,hp)g = (h2,h3, . . . ,hp,h1).

Note that if h1h2 . . .hp = 1H then h−1
1 h1h2 . . .hph1 = h−1

1 1Hh1 = 1H so h2h3 . . .hph1 =
1H and so g really is a permutation of Ω. Then gp is the identity permutation but g is
not the identity. Hence the order of g is not 1, and it divides p, which is prime, so the
order of g is p.

Let G = 〈g〉, which has order p. By the Orbit-Stabilizer Theorem, every orbit of
G on Ω has size dividing p, so size either 1 or p. Suppose that there are m1 orbits of
size 1 and m2 orbits of size p. Then

m1 +m2 p = |Ω|= |H|p−1 ,

which is divisible by p, because p divides |H|. Hence p divides m1.
Any orbit of size 1 contains a single p-tuple of the form (h,h, . . . ,h) with hp = 1H .

There is at least one such orbit: {(1H ,1H , . . . ,1H)}. Therefore m1 6= 0. Hence m1 > p.
So there must be at least p− 1 other orbits of size 1. If {(h,h, . . . ,h)} is any one of
these other orbits then h is an element of order p. �

Given an action π of a group G on a set Ω, an equivalence relation ∼ on Ω is
called a G-equivalence if α ∼ β ⇐⇒ απg ∼ βπg for all α, β in Ω and all g in G.
Given such a G-equivalence, let Ω′ be the set of equivalence classes of ∼, and define
an action ρ of G on Ω′ by [α]ρg = [απg]. We need to show that ρ really is an action.
Now, [α] = [β] =⇒ α ∼ β =⇒ απg = βπg =⇒ [απg] = [βπg] =⇒ [α]ρg = [β]ρg, so
ρg is well defined. Also [α]ρ1G = [απ1G] = [α] for all α in Ω, so ρ1G is the identity
permutation of Ω′. Finally, for g, h in G:

[α]ρgρh = [απg]ρh = [απgπh]
= [απgh], because π is an action,
= [α]ρgh,

so ρ is an action.

Example Let π be the right regular action of G on itself, and let H 6 G. For x, y in G,
x ∼R y ⇐⇒ yx−1 ∈ H. Given g in G,

xπg ∼R yπg ⇐⇒ xg ∼R yg

⇐⇒ (yg)(xg)−1 ∈ H
⇐⇒ ygg−1x−1 ∈ H
⇐⇒ yx−1 ∈ H
⇐⇒ x ∼R y,
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so ∼R is a G-equivalence. The equivalence classes of ∼R are the right cosets of H
in G, so there is an action ρ of G on these right cosets defined by

(Hx)ρg = [x]ρg = [xπg] = [xg] = Hxg.

This action is transitive, because, given any two right cosets Hx and Hy, we have
Hy = (Hx)ρg with g = x−1y.

Theorem If a group G has a subgroup H of index n then there is a normal subgroup
K of G such that K 6 H and G/K is isomorphic to a transitive subgroup of Sn.

Proof Let ρ be the above action of G on the right cosets of H in G. Then Im(ρ) is a
transitive subgroup of Sn.

Let K = ker(ρ). By the First Isomorphism Theorem, G/K ∼= Im(ρ).
If k ∈ K then Hxρk = Hx for all x. In particular, Hρk = H, so Hk = H so k ∈ H.

Therefore K 6 H. �

This prompts a remark about subsets of a subgroup. Suppose that H is a subgroup
of a group G and K ⊆ H. If K is a subgroup of G then it is a subgroup of H. If K is a
subgroup of H then it is a subgroup of G. If K is a normal subgroup of G then it is a
normal subgroup of H. However, if K is a normal subgroup of H then it may not be a
normal subgroup of G.

Example Let G = GL(2,3) and Ω consist of the eight non-zero vectors in F2
3. Let π

be the action defined by απg = αg for α in Ω and g in G.
Define α ∼ β if there is a non-zero scalar λ in F3 (so λ = 1 or λ = 2) such that

α = λβ. This is a G-equivalence because

(λβ)πg = (λβ)g = λ(βg) = λ(βπg)

since λ is a scalar. There are four equivalence classes:

{(1,0), (2,0)} = A
{(0,1), (0,2)} = B
{(1,1), (2,2)} = C
{(1,2), (2,1)} = D.

Let K = ker(ρ). If λ = 1 or λ = 2 then
[

λ 0
0 λ

]
∈ K. Conversely, suppose that

g =
[

a b
c d

]
∈ K. Then Aρg = A so (a,b) = (1,0) or (2,0) so b = 0. Similarly,
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Bρg = B so (c,d) = (0,1) or (0,2) so c = 0. Then Cρg = [(a,d)] = C so a = d.
Therefore

K =
{[

1 0
0 1

]
,

[
2 0
0 2

]}
and |K| = 2. Then |G/K| = |G|/ |K| = 48/2 = 24 = |S4|, so G/K ∼= S4. In other
words, we get all permutations of {A,B,C,D}.

We know that S4 has a unique subgroup of index 2: it is A4. By the Correspondence
Theorem, GL(2,3) has a unique subgroup of index 2 which contains K. We also
know that GL(2,3) has a subgroup SL(2,3), which is the kernel of the determinant
homomorphism. The determinant of an element of GL(2,3) can be either of the two
non-zero scalars in F3, so SL(2,3) has index 2 in GL(2,3), by the First Isomorphism
Theorem. Inspection shows that both elements of K have determinant 1, so K 6
SL(2,3). Therefore SL(2,3) is this unique subgroup of GL(2,3) which contains K
and has order 24.
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Theorem (wrongly attributed to Burnside) Let π be an action of a finite group G
on a set Ω. For g in G, put f (g) =

∣∣{α ∈ Ω : απg = α
}∣∣. Then the number of orbits

of G on Ω is equal to
1
|G| ∑

g∈G
f (g).

Proof Let m =
∣∣{(α,g) : α ∈ Ω, g ∈ G, απg = α

}∣∣. Count m in two ways:

m = ∑
g∈G

f (g) = ∑
α∈Ω

|Gα| .

Let Γ⊆Ω be any orbit. By the Orbit-Stabilizer Theorem, |Gα|= |G|/ |Γ| for each
α in Γ, and so

∑
α∈Γ

|Gα|= ∑
α∈Γ

|G|
|Γ|

= |Γ|× |G|
|Γ|

= |G| .
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Therefore
∑

α∈Ω

|Gα|= |G|×number of orbits

and so
1
|G| ∑

g∈G
f (g) =

1
|G| ∑

α∈Ω

|Gα|= number of orbits. �

Example Take Ω = {1,2,3,4,5,6} and let G = {1,a,b,c} where a = (12)(34), b =
(34)(56) and c = (12)(56). Then f (1) = 6 and f (a) = f (b) = f (c) = 2, so

the number of orbits =
1
4
(6+2+2+2) = 3,

which is correct, because the orbits are {1,2}, {3,4} and {5,6}.

Note: any group {1,a,b,c} in which a2 = b2 = c2 = 1, ab = ba = c, ac = ca = b
and bc = cb = a is called a Klein group. Any two such groups are isomorphic to each
other.
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