

MAS 305

Algebraic Structures II

Notes 2 Autumn 2006

Group Theory

A group is a set G with a binary operation \circ such that

closure for all g, h in G, $g \circ h \in G$;

associativity for all g, h, k in G, $(g \circ h) \circ k = g \circ (h \circ k)$;

identity there is an element 1_G in G with $1_G \circ g = g = g \circ 1_G$ for all g in G;

inverses for all g in G, there is an element g^{-1} such that $g \circ g^{-1} = 1_G = g^{-1} \circ g$.

A group is *commutative*, or *Abelian*, if $g \circ h = h \circ g$ for all g, h in G.

In an Abelian group we often write $g \circ h$ as g + h. Otherwise we usually write $g \circ h$ as gh. Associativity implies that there is no doubt about what ghk means.

The *order* of a group G is |G|, the number of elements in G. G is said to be finite if |G| is finite, infinite otherwise.

Examples

- (a) $(\mathbb{Z},+)$ is an infinite Abelian group.
- (b) $(\mathbb{Q} \setminus \{0\}, \times)$ is an infinite Abelian group.
- (c) $GL(n,\mathbb{R})$ consists of all invertible $n \times n$ matrices with real entries. Under matrix multiplication, it is an infinite nonAbelian group. It is called the *general linear* group of dimension n over \mathbb{R} .
- (d) Similarly, if p is prime, GL(n,p) consists of all invertible $n \times n$ matrices with entries in \mathbb{Z}_p .

(e) S_n is the group of all permutations of $\{1, 2, ..., n\}$. It is called the *symmetric* group of degree n. The operation is composition of functions. We write permutations as functions on the right, so gh means "do g and then do h". If n = 5 and

$$g = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{array}\right)$$

then 1g = 2 and the cycle form of g is (123)(45). If, in addition, h = (24) then gh = (14523).

(f) D_{2n} is the group of all rotations and reflections of the regular polygon with n sides that leave the polygon occupying the same space. It is called the *dihedral* group of order 2n.

It follows from the axioms that

- (a) the identity element is unique;
- (b) each element has a unique inverse;
- (c) $(gh)^{-1} = h^{-1}g^{-1}$;
- (d) (cancellation) if gh = gk then h = k, and if gh = kh then g = k;
- (e) (**general associativity**) the product $g_1g_2...g_n$ is well defined without parentheses.

Subgroups

Definition A subset H of a group G is a *subgroup* of G if it is a group under the same operation.

Notation We write $H \le G$ to show that H is a subgroup of G, and H < G to show that H is a subgroup of G but $H \ne G$.

The Subgroup Test A subset H of G is a subgroup of G if and only if

- (a) H is not empty, and
- (b) whenever h_1 and h_2 are in H then $h_1^{-1}h_2 \in H$.

Usually the easiest way of verifying (a) is to show that $1_G \in H$.

If $H \leq G$ then $1_H = 1_G$.

 $\{1_G\}$ is always a subgroup of G, called the *trivial* subgroup, often written as 1.

G is a subgroup of itself.

Lemma If H and K are subgroups of G, then so is $H \cap K$. In fact, the intersection of any non-empty collection of subgroups is a subgroup of G.

Proof Exercise.

Powers

If g is an element of a group G and m is a positive integer then

$$g^m$$
 denotes $\underbrace{g \circ g \circ g \circ \cdots \circ g}_{m \text{ times}}$
 g^0 denotes 1_G
 g^{-m} denotes $(g^{-1})^m$.

Then $g^n \circ g^m = g^{n+m} = g^m \circ g^n$ for all integers n and m.

Definition If $g, g^2, ..., g^n, ...$ are all distinct then g has *infinite order*. Otherwise, the *order* of g is the smallest positive integer n with $g^n = 1_G$.

If g has order n then $g^m = 1_G$ if and only if n divides m.

Theorem If *G* is a group and $g \in G$ then $\{g^n : n \in \mathbb{Z}\}$ is a subgroup of *G*.

This subgroup is written $\langle g \rangle$, and called the *subgroup generated by g*. Any (sub-) group of this form is called *cyclic*. The order of the subgroup $\langle g \rangle$ is equal to the order of the element g.

Example In D_{2n} , let r be the rotation clockwise through $2\pi/n$. Then r^m is rotation through $2m\pi/n$ and so r has order n. Therefore $\langle r \rangle$ is a cyclic subgroup of order n.

Cosets

Let H be a subgroup of a group G. Define \sim_R on G by

$$x \sim_R y \iff yx^{-1} \in H$$
.

This is an equivalence relation, as we now check.

- (a) If $x \in G$ then $xx^{-1} = 1_G \in H$ so $x \sim_R x$: hence \sim_R is reflexive.
- (b) If $x \sim_R y$ then $yx^{-1} \in H$ so $(yx^{-1})^{-1} \in H$ so $xy^{-1} \in H$ so $y \sim_R x$: hence \sim_R is symmetric.
- (c) If $x \sim_R y$ and $y \sim_R z$ then $yx^{-1} \in H$ and $zy^{-1} \in H$ so $(zy^{-1})(yx^{-1}) \in H$ so $zx^{-1} \in H$ so $x \sim_R z$: hence \sim_R is transitive.

The equivalence classes of \sim_R are called the *right cosets* of H in G. The right coset containing x is

$$[x] = \{ y \in G : y \sim_R x \}$$

$$= \{ y \in G : yx^{-1} \in H \}$$

$$= \{ y \in G : yx^{-1} = h \text{ for some } h \text{ in } H \}$$

$$= \{ y \in G : y = hx \text{ for some } h \text{ in } H \}$$

$$= \{ hx : h \in H \},$$

which is written Hx.

Sometimes it is helpful to think of the right coset containing x as simply the equivalence class containing x; at other times, it is helpful to think of it as the set of all elements hx for h in H.

Similarly, define \sim_L by $x \sim_L y \iff x^{-1}y \in H$. This is also an equivalence relation (proof: exercise). Its equivalence classes have the form $\{xh : h \in H\} = xH$ and are called *left cosets*.

Theorem There is a bijection from the set of right cosets of H to the set of left cosets of H, so there are the same number of cosets of each type.

Proof Define f from the set of right cosets to the set of left cosets by

$$f(Hx) = x^{-1}H.$$

We must show that

(a) f is well defined;

- (b) f is one-to-one;
- (c) f is onto.

Part (a) is the standard problem when defining functions or operations on equivalence classes: we must ensure that our definition does not depend on the element which we have used to name the class. Parts (b) and (c) show that f is a bijection.

(a) If
$$Hx = Hy$$
 then $x \sim_R y$ so $yx^{-1} \in H$ so $(y^{-1})^{-1}(x^{-1}) \in H$ so $y^{-1} \sim_L x^{-1}$ so $y^{-1}H = x^{-1}H$.

(b)

$$f(Hx) = f(Hy) \implies x^{-1}H = y^{-1}H$$

$$\Rightarrow y^{-1} = x^{-1}h \quad \text{for some } h \text{ in } H$$

$$\Rightarrow y = h^{-1}x \in Hx$$

$$\Rightarrow Hy = Hx.$$

(c) Given the left coset zH, $f(Hz^{-1}) = zH$.

Definition The number of right (or of left) cosets of H in G is the *index* of H in G, written |G:H|.

Lagrange's Theorem If G is a finite group and $H \leq G$ then $|G| = |H| \times |G:H|$.

Proof Fix an element x in G. Define $f: H \to Hx$ by f(h) = hx. Clearly, f is onto. If $f(h_1) = f(h_2)$ then $h_1x = h_2x$ so $h_1 = h_2$ (by cancellation); therefore f is one-to-one. Hence f is a bijection, so |Hx| = |H|.

There are |G:H| cosets, each of size |H|, so $|G:H| \times |H| = |G|$. \square

Corollary In a finite group G, the order of each subgroup, and the index of each subgroup, both divide the order of G.

Corollary If G is finite and $g \in G$ then the order of g divides the order of G.

Proof Apply Lagrange's Theorem to the subgroup $\langle g \rangle$. \square

Normal subgroups

Definition A subgroup H of G is a *normal* subgroup of G if $g^{-1}hg \in H$ for all h in H and all g in G.

Notation We write $H \subseteq G$ to indicate that H is normal subgroup of G, and $H \subseteq G$ to show that H is a normal subgroup of G other than G itself.

Lemma The following are equivalent.

- (a) $H \subseteq G$;
- (b) for every g in G, $\{g^{-1}hg: h \in H\} = H$;
- (c) for all g in G, gH = Hg, that is, every left coset is a right coset.

Proof Write $g^{-1}Hg = \{g^{-1}hg : h \in H\}$. We show that (a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (a).

- (a) \Longrightarrow (b) Choose any element g in G. By (a), $g^{-1}Hg \subseteq H$. Also by (a), $gHg^{-1} \subseteq H$. Therefore $g^{-1}(gHg^{-1})g \subseteq g^{-1}Hg$. But $g^{-1}(gHg^{-1})g = \{g^{-1}ghg^{-1}g : h \in H\} = H$, so $H \subseteq g^{-1}Hg$. Now each of H and $g^{-1}Hg$ is a subset of the other, so $H = g^{-1}Hg$.
- **(b)** \Longrightarrow **(c)** Let $g \in G$. Then **(b)** $\Rightarrow g^{-1}Hg = H \Rightarrow gg^{-1}Hg = gH \Rightarrow Hg = gH$.
- (c) \Longrightarrow (a) Let $g \in G$ and $h \in H$. Then $hg \in Hg$. By (c), $hg \in gH$, so there is some h' in H with hg = gh'. Then $g^{-1}hg = h' \in H$. This is true for all choices of g and h, so $H \subseteq G$. \square

Lemma (a) If G is Abelian then every subgroup of G is normal in G.

(b) If $H \leq G$ and |G:H| = 2 then $H \leq G$.

Proof (a) If G is Abelian then $g^{-1}hg = hg^{-1}g = h \in H$ for all g in G and all h in H.

(b) If |G:H|=2 then H has two right cosets in G. One of these is H itself, so the other one must be $G \setminus H$. Similarly, the two left cosets of H in G are H and $G \setminus H$. By the previous lemma, $H \subseteq G$. \square