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Group Theory

A group is a set G with a binary operation o such that
closure forall g, hin G, goh € G;
associativity forall g, s, kin G, (goh)ok =go(hok);

identity there is an element 15 in G with lgog=g=golg forall gin G;
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inverses for all g in G, there is an element g~ ' such that gog™ =1g=¢ " og.

A group is commutative, or Abelian, if goh =hog for all g, hin G.

In an Abelian group we often write g o h as g+ h. Otherwise we usually write goh
as gh. Associativity implies that there is no doubt about what ghk means.

The order of a group G is |G|, the number of elements in G. G is said to be finite
if |G| is finite, infinite otherwise.

Examples
(a) (Z,+) is an infinite Abelian group.
() (Q\ {0}, x) is an infinite Abelian group.

(c) GL(n,R) consists of all invertible n x n matrices with real entries. Under matrix
multiplication, it is an infinite nonAbelian group. It is called the general linear
group of dimension n over R.

(d) Similarly, if p is prime, GL(n, p) consists of all invertible n x n matrices with
entries in Zy,.
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Sy is the group of all permutations of {1,2,...,n}. It is called the symmetric
group of degree n. The operation is composition of functions. We write permu-
tations as functions on the right, so gh means “do g and then do h”. If n =35

and
(12345
£=\23 154
then 1g = 2 and the cycle form of g is (123)(45). If, in addition, h = (24) then
gh=(14523).

D», is the group of all rotations and reflections of the regular polygon with
n sides that leave the polygon occupying the same space. It is called the dihedral
group of order 2n.

It follows from the axioms that

(a) the identity element is unique;

(b) each element has a unique inverse;

© (gh)'=n""g7l

(d) (cancellation) if gh = gk then h = k, and if gh = kh then g = k;

(e) (general associativity) the product gig>...g, is well defined without paren-

theses.

Subgroups

Definition A subset H of a group G is a subgroup of G if it is a group under the same
operation.

Notation We write H < G to show that H is a subgroup of G, and H < G to show that
H is a subgroup of G but H # G.

The Subgroup Test A subset H of G is a subgroup of G if and only if

(a) H is not empty, and

(b) whenever h; and h, are in H then hl_lhz €H.



Usually the easiest way of verifying (a) is to show that 15 € H.

If H< Gthen lg = 15.
{1¢} is always a subgroup of G, called the trivial subgroup, often written as 1.
G is a subgroup of itself.

Lemma If H and K are subgroups of G, then so is H N K. In fact, the intersection of
any non-empty collection of subgroups is a subgroup of G.

Proof Exercise.

Powers

If g is an element of a group G and m is a positive integer then

g" denotes gogogo---og
m times
gO denotes 1g
g™ denotes (g_ ! )m

Then g" o g = g™ = g" o g" for all integers n and m.

Definition If g, gz, ..., g", ... are all distinct then g has infinite order. Otherwise, the
order of g is the smallest positive integer n with g" = 1.

If g has order n then g" = 1¢ if and only if n divides m.
Theorem If G is a group and g € G then {g" : n € Z} is a subgroup of G.

This subgroup is written (g), and called the subgroup generated by g. Any (sub-)
group of this form is called cyclic. The order of the subgroup (g) is equal to the order

of the element g.

Example In Dy, let r be the rotation clockwise through 2m/n. Then 7" is rotation
through 2mm/n and so r has order n. Therefore (r) is a cyclic subgroup of order n.



Cosets

Let H be a subgroup of a group G. Define ~r on G by
X~RY < yx*1 €H.
This is an equivalence relation, as we now check.

(a) If x € G then xx ' = 15 € H s0 x ~g x: hence ~rp is reflexive.

(b) If x ~g y then yx~! € H so (yxfl)_1 € Hsoxy~! € H soy~pgx: hence ~p is
symmetric.

(c) If x~gyand y~gzthen yx"! € H and zy~' € H so (zy"")(yx~!) € H so
zx~ 1 € H so x ~g z: hence ~ is transitive.

The equivalence classes of ~p are called the right cosets of H in G. The right
coset containing x is

] = {yeG:y~gx}

{yeG:yx'eH}

= {yEG:yx_lzhforsomehinH}

= {y€eG:y=hxforsomehin H}
{hx:heH},

which is written Hx.

Sometimes it is helpful to think of the right coset containing x as simply the equiv-
alence class containing x; at other times, it is helpful to think of it as the set of all
elements hx for 4 in H.

Similarly, define ~; by x ~; y <=> x~'y € H. This is also an equivalence relation
(proof: exercise). Its equivalence classes have the form {xh:h € H} = xH and are
called left cosets.

Theorem There is a bijection from the set of right cosets of H to the set of left cosets
of H, so there are the same number of cosets of each type.

Proof Define f from the set of right cosets to the set of left cosets by
f(Hx)=x"'H.
We must show that

(a) fis well defined;



(b) f is one-to-one;
(c) fis onto.

Part (a) is the standard problem when defining functions or operations on equivalence
classes: we must ensure that our definition does not depend on the the element which
we have used to name the class. Parts (b) and (c) show that f is a bijection.

(a) f Hx =Hy thenx~gysoyx ' €¢Hso (y ") '(x ') eHsoy !~ x!s0

y_lH:x_lH.
(b)
f(Hx)=f(Hy) = x 'H=y'H
= y_lzx_lh for some i in H
= y=h x € Hx
= Hy=Hx

(c) Given the left coset zH, f(Hz ') =zH. O

Definition The number of right (or of left) cosets of H in G is the index of H in G,
written |G : H|.

Lagrange’s Theorem If G is a finite group and H < G then |G| = |H| x |G : H|.
Proof Fix an element x in G. Define f:H — Hx by f(h) = hx. Clearly, f is onto. If
f(h1) = f(hy) then hyx = hpx so hy = hy (by cancellation); therefore f is one-to-one.
Hence f is a bijection, so |[Hx| = |H]|.

There are |G : H| cosets, each of size |H|,so |G: H|x |H|=|G|. O

Corollary In a finite group G, the order of each subgroup, and the index of each
subgroup, both divide the order of G.

Corollary If G is finite and g € G then the order of g divides the order of G.

Proof Apply Lagrange’s Theorem to the subgroup (g). [



Normal subgroups

Definition A subgroup H of G is a normal subgroup of G if g~ 'hg € H for all hin H
and all g in G.

Notation We write H < G to indicate that H is normal subgroup of G, and H <G to
show that H is a normal subgroup of G other than G itself.

Lemma The following are equivalent.
(a) HLG;
(b) forevery gin G, {g 'hg:he H} = H;
(c) forall gin G, gH = Hg, that is, every left coset is a right coset.

Proof Write g~'Hg = {g 'hg:h € H}. We show that (a) => (b) => (¢c) => (a).

(a) = (b) Choose any element g in G. By (a), g 'Hg CH. Also by (a), gHg ' CH.
Therefore g~ (gHg*I) gCg 'Hg Butg™! (gHg*I) g= {g’lghg’lg the H} =
H, so H C g7 'Hg. Now each of H and g~ 'Hg is a subset of the other, so
H=g 'Hg.

(b) = (c¢) Let g € G. Then (b) :>g_]Hg:H:>gg_ng =gH = Hg=gH.

(¢)=(a) Letge Gand h € H. Then hg € Hg. By (¢), hg € gH, so there is some /'
in H with hg = gh’. Then g~'hg = I’ € H. This is true for all choices of g and
h,soH<G. 0O

Lemma (a) If G is Abelian then every subgroup of G is normal in G.

(b) If H<Gand |G: H| =2then H <G.

Proof (a) If Gis Abelianthen g 'hg=hg 'g=hc HforallginGandall hin H.

(b) If |G : H| = 2 then H has two right cosets in G. One of these is H itself, so the
other one must be G\ H. Similarly, the two left cosets of H in G are H and
G\ H. By the previous lemma, H1G. [



