
MAS 305 Algebraic Structures II

Notes 2 Autumn 2006

Group Theory
A group is a set G with a binary operation ◦ such that

closure for all g, h in G, g◦h ∈ G;

associativity for all g, h, k in G, (g◦h)◦ k = g◦ (h◦ k);

identity there is an element 1G in G with 1G ◦g = g = g◦1G for all g in G;

inverses for all g in G, there is an element g−1 such that g◦g−1 = 1G = g−1 ◦g.

A group is commutative, or Abelian, if g◦h = h◦g for all g, h in G.
In an Abelian group we often write g◦h as g+h. Otherwise we usually write g◦h

as gh. Associativity implies that there is no doubt about what ghk means.
The order of a group G is |G|, the number of elements in G. G is said to be finite

if |G| is finite, infinite otherwise.

Examples
(a) (Z,+) is an infinite Abelian group.

(b) (Q\{0} ,×) is an infinite Abelian group.

(c) GL(n,R) consists of all invertible n×n matrices with real entries. Under matrix
multiplication, it is an infinite nonAbelian group. It is called the general linear
group of dimension n over R.

(d) Similarly, if p is prime, GL(n, p) consists of all invertible n× n matrices with
entries in Zp.
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(e) Sn is the group of all permutations of {1,2, . . . ,n}. It is called the symmetric
group of degree n. The operation is composition of functions. We write permu-
tations as functions on the right, so gh means “do g and then do h”. If n = 5
and

g =
(

1 2 3 4 5
2 3 1 5 4

)
then 1g = 2 and the cycle form of g is (123)(45). If, in addition, h = (24) then
gh = (14523).

(f) D2n is the group of all rotations and reflections of the regular polygon with
n sides that leave the polygon occupying the same space. It is called the dihedral
group of order 2n.

It follows from the axioms that

(a) the identity element is unique;

(b) each element has a unique inverse;

(c) (gh)−1 = h−1g−1;

(d) (cancellation) if gh = gk then h = k, and if gh = kh then g = k;

(e) (general associativity) the product g1g2 . . .gn is well defined without paren-
theses.

Subgroups
Definition A subset H of a group G is a subgroup of G if it is a group under the same
operation.

Notation We write H 6 G to show that H is a subgroup of G, and H < G to show that
H is a subgroup of G but H 6= G.

The Subgroup Test A subset H of G is a subgroup of G if and only if

(a) H is not empty, and

(b) whenever h1 and h2 are in H then h−1
1 h2 ∈ H.
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Usually the easiest way of verifying (a) is to show that 1G ∈ H.

If H 6 G then 1H = 1G.
{1G} is always a subgroup of G, called the trivial subgroup, often written as 1.
G is a subgroup of itself.

Lemma If H and K are subgroups of G, then so is H ∩K. In fact, the intersection of
any non-empty collection of subgroups is a subgroup of G.

Proof Exercise.

Powers
If g is an element of a group G and m is a positive integer then

gm denotes g◦g◦g◦ · · · ◦g︸ ︷︷ ︸
m times

g0 denotes 1G

g−m denotes
(
g−1)m

.

Then gn ◦gm = gn+m = gm ◦gn for all integers n and m.

Definition If g, g2, . . . , gn, . . . are all distinct then g has infinite order. Otherwise, the
order of g is the smallest positive integer n with gn = 1G.

If g has order n then gm = 1G if and only if n divides m.

Theorem If G is a group and g ∈ G then {gn : n ∈ Z} is a subgroup of G.

This subgroup is written 〈g〉, and called the subgroup generated by g. Any (sub-)
group of this form is called cyclic. The order of the subgroup 〈g〉 is equal to the order
of the element g.

Example In D2n, let r be the rotation clockwise through 2π/n. Then rm is rotation
through 2mπ/n and so r has order n. Therefore 〈r〉 is a cyclic subgroup of order n.
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Cosets
Let H be a subgroup of a group G. Define ∼R on G by

x ∼R y ⇐⇒ yx−1 ∈ H.

This is an equivalence relation, as we now check.

(a) If x ∈ G then xx−1 = 1G ∈ H so x ∼R x: hence ∼R is reflexive.

(b) If x ∼R y then yx−1 ∈ H so
(
yx−1)−1 ∈ H so xy−1 ∈ H so y ∼R x: hence ∼R is

symmetric.

(c) If x ∼R y and y ∼R z then yx−1 ∈ H and zy−1 ∈ H so (zy−1)(yx−1) ∈ H so
zx−1 ∈ H so x ∼R z: hence ∼R is transitive.

The equivalence classes of ∼R are called the right cosets of H in G. The right
coset containing x is

[x] = {y ∈ G : y ∼R x}
=

{
y ∈ G : yx−1 ∈ H

}
=

{
y ∈ G : yx−1 = h for some h in H

}
= {y ∈ G : y = hx for some h in H}
= {hx : h ∈ H} ,

which is written Hx.
Sometimes it is helpful to think of the right coset containing x as simply the equiv-

alence class containing x; at other times, it is helpful to think of it as the set of all
elements hx for h in H.

Similarly, define∼L by x∼L y ⇐⇒ x−1y∈H. This is also an equivalence relation
(proof: exercise). Its equivalence classes have the form {xh : h ∈ H} = xH and are
called left cosets.

Theorem There is a bijection from the set of right cosets of H to the set of left cosets
of H, so there are the same number of cosets of each type.

Proof Define f from the set of right cosets to the set of left cosets by

f (Hx) = x−1H.

We must show that

(a) f is well defined;
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(b) f is one-to-one;

(c) f is onto.

Part (a) is the standard problem when defining functions or operations on equivalence
classes: we must ensure that our definition does not depend on the the element which
we have used to name the class. Parts (b) and (c) show that f is a bijection.

(a) If Hx = Hy then x ∼R y so yx−1 ∈ H so (y−1)−1(x−1) ∈ H so y−1 ∼L x−1 so
y−1H = x−1H.

(b)

f (Hx) = f (Hy) ⇒ x−1H = y−1H
⇒ y−1 = x−1h for some h in H
⇒ y = h−1x ∈ Hx
⇒ Hy = Hx.

(c) Given the left coset zH, f (Hz−1) = zH. �

Definition The number of right (or of left) cosets of H in G is the index of H in G,
written |G : H|.

Lagrange’s Theorem If G is a finite group and H 6 G then |G|= |H|× |G : H|.

Proof Fix an element x in G. Define f :H → Hx by f (h) = hx. Clearly, f is onto. If
f (h1) = f (h2) then h1x = h2x so h1 = h2 (by cancellation); therefore f is one-to-one.
Hence f is a bijection, so |Hx|= |H|.

There are |G : H| cosets, each of size |H|, so |G : H|× |H|= |G|. �

Corollary In a finite group G, the order of each subgroup, and the index of each
subgroup, both divide the order of G.

Corollary If G is finite and g ∈ G then the order of g divides the order of G.

Proof Apply Lagrange’s Theorem to the subgroup 〈g〉. �
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Normal subgroups
Definition A subgroup H of G is a normal subgroup of G if g−1hg ∈H for all h in H
and all g in G.

Notation We write H E G to indicate that H is normal subgroup of G, and H C G to
show that H is a normal subgroup of G other than G itself.

Lemma The following are equivalent.

(a) H EG;

(b) for every g in G,
{

g−1hg : h ∈ H
}

= H;

(c) for all g in G, gH = Hg, that is, every left coset is a right coset.

Proof Write g−1Hg =
{

g−1hg : h ∈ H
}

. We show that (a) =⇒ (b) =⇒ (c) =⇒ (a).

(a) =⇒ (b) Choose any element g in G. By (a), g−1Hg⊆H. Also by (a), gHg−1 ⊆H.
Therefore g−1 (

gHg−1)g⊆ g−1Hg. But g−1 (
gHg−1)g =

{
g−1ghg−1g : h ∈ H

}
=

H, so H ⊆ g−1Hg. Now each of H and g−1Hg is a subset of the other, so
H = g−1Hg.

(b) =⇒ (c) Let g ∈ G. Then (b) ⇒ g−1Hg = H ⇒ gg−1Hg = gH ⇒ Hg = gH.

(c) =⇒ (a) Let g ∈ G and h ∈ H. Then hg ∈ Hg. By (c), hg ∈ gH, so there is some h′

in H with hg = gh′. Then g−1hg = h′ ∈ H. This is true for all choices of g and
h, so H EG. �

Lemma (a) If G is Abelian then every subgroup of G is normal in G.

(b) If H 6 G and |G : H|= 2 then H EG.

Proof (a) If G is Abelian then g−1hg = hg−1g = h∈H for all g in G and all h in H.

(b) If |G : H|= 2 then H has two right cosets in G. One of these is H itself, so the
other one must be G \H. Similarly, the two left cosets of H in G are H and
G\H. By the previous lemma, H EG. �
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